TU Berlin

Fachgebiet Angewandte GeophysikKonnektivität

Inhalt des Dokuments

zur Navigation

Konnektivität

Verbundprojekt, gefördert von der

Laufzeit: 3 Jahre

Projektpartner: UFZ




Teilprojekt: Hydraulische Konnektivität in oberflächennahen, unverfestigten Porengrundwasserleitern


Bewilligungsempfänger:

Prof. Dr. habil. Frank Börner

Projektbearbeitung:

N.N.


Für die Charakterisierung und Quantifizierung der Konnektivität von hydrostratigraphischen Einheiten in Porengrundwasserleitern ist im Vergleich zur Erfassung und Quantifizierung der räumlichen Verteilung hydraulischer Leitfähigkeiten bisher nur wenig Forschung betrieben worden. Dies trifft nicht nur auf die theoretische Betrachtung der Konnektivität von Aquiferstrukturen verschiedener Größenordnungen zu, sondern insbesondere auch auf deren Erfassung und Quantifizierung durch Feldversuche. Die Unsicherheiten bezüglich der Kontinuität hydrostratigraphischer Einheiten genauso wie die bisher noch größere Unsicherheit bezüglich ihrer Konnektivität, führen immer noch zu teils erheblichen Problemen bei der Betrachtung, Modellierung und Vorhersage des realen, natürlichen Stofftransports insbesondere in heterogenen Grundwasserleitern. Daher glauben wir, dass eine genauere Betrachtung und Erforschung von Konnektivität von wesentlicher Relevanz für die Erfassung der Stofftransporteigenschaften in heterogenen Aquiferen ist.

In diesem Zusammenhang basiert unsere initiale Arbeitshypothese auf einer Verbindung zwischen Konnektivität und Signalimpulsen verschiedener Frequenzbereiche von hydraulischen als auch für Messungen der „Spektralen Induzierten Polarisation“ (SIP). Dabei soll der Zusammenhang zwischen Signalfrequenz und Signalamplitudendämpfung (für SIP zusätzlich Phasenverschiebung) als möglicher Indikator (oder als Maß) für verschiedenartige Konnektivitäten untersucht werden.

Ausgangspunkt dieses Projektes ist zunächst die Entwicklung eines oder mehrerer theoretischer Konnektivitätskonzepte. Weiterhin soll das Potential geophysikalischer (SIP) und hydraulischer Messungen (z.B. Direct Push gestützte Cross-Hole oder Slug Interference Tests) sowie eine Kopplung von hydraulischen und geophysikalischen Messungen untersucht werden. Dabei soll vor allem die erwähnte Frequenzabhängigkeit der gemessenen Signale für verschiedene Konnektivitätsszenarien näher betrachtet werden um deren Eignung für die Erfassung der Konnektivität zu prüfen. Dafür werden direkt vergleichbare und simultan durchgeführte Laborversuche und numerische Simulationen der unterschiedlichen Konnektivitätsszenarien betrachtet. Die Experimente und Simulationen werden dabei mit steigender Komplexität, auf unterschiedlichen Größenordnungen und dementsprechend mit unterschiedlichen Konnektivitätsszenarien realisiert. Die Ergebnisse der Simulationen und Experimente sollen dann genutzt werden, das entwickelte theoretische Konzept (bzw. die Konzepte) iterativ anzupassen und zu optimieren. Das Hauptziel des Projektes besteht darin, dass auf der Basis des optimierten theoretischen Konnektivitätskonzepts die Ergebnisse der (simulierten) Labor- und Feldexperimente nutzen zu können, um Konnektivität messen und diese neue Information letztendlich in Strömungsund Transportmodelle einfließen lassen zu können.

 

Navigation

Direktzugang

Schnellnavigation zur Seite über Nummerneingabe