Einfluß von Offset und Antennenorientierung auf Reflexionsmerkmale beim Bodenradar

Diplomarbeit

vorgelegt von
cand.geophys. Achim Helm

Institut für angewandte Geowissenschaften II
Technische Universität Berlin
März 1998
Inhaltsverzeichnis

1 Einleitung 1

2 Theoretische Grundlagen 2
 2.1 Ausbreitung einer EM Welle 2
 2.1.1 In einer Schicht 2
 2.1.2 Übergang zwischen zwei Schichten 5
 2.1.2.1 Bei nicht leitfähigen Medien 5
 2.1.2.2 Bei leitfähigen Medien 7
 2.2 Theoretisches Verhalten des komplexen Reflexionskoefizienten 9
 2.3 Abstrahlcharakteristik eines Dipols 14

3 Praktische Grundlagen 19
 3.1 Allgemeine Geologie der Asse 19
 3.2 Prinzip der Datenaufnahme 22
 3.3 Dataprocessing 25
 3.4 Geschwindigkeitsanalyse 34
 3.5 Erstellung eines Tiefenmodells 36
 3.6 Erstellung eines Untergrundmodells 37
 3.7 Vorwärtsmodellierung 37

4 Praxisteil I: Erkundung der Lokation auf der 490 m Sohle 40
 4.1 Vergleich der Antennenfrequenzen an der Südstoßmessung 42
 4.2 Zero Offset Sektionen auf der 490 m Strecke 45
 4.3 Variable Offset Sektionen auf der 490 m Strecke 50
 4.4 Erstellung eines Untergrundmodells 57

5 Praxisteil II: Zusatzmessungen 63
 5.1 Antennencharakteristik im Steinsalz 63
 5.2 Einfluß des Antennenabstandes bei Zero Offset Sektionen 69
 5.3 Einfluß der Antennenorientierung bei Zero Offset Sektionen 70
Inhaltsverzeichnis

<table>
<thead>
<tr>
<th>Kapitel</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.4 Streckenquerschnittsmessungen</td>
<td>75</td>
</tr>
<tr>
<td>5.5 Einfluß der Antennenorientierung bei Variable Offset Sektionen</td>
<td>80</td>
</tr>
<tr>
<td>(CMP Messungen)</td>
<td></td>
</tr>
<tr>
<td>6 Praxiteil III: Feldbeispiel Salzaufwölbung</td>
<td>87</td>
</tr>
<tr>
<td>7 Zusammenfassung und Ausblick</td>
<td>93</td>
</tr>
<tr>
<td>8 Danksagung</td>
<td>95</td>
</tr>
<tr>
<td>Literatur</td>
<td>96</td>
</tr>
<tr>
<td>Anhang</td>
<td>97</td>
</tr>
<tr>
<td>A Programmlistings</td>
<td>98</td>
</tr>
<tr>
<td>A.1 CMPANO2: Fortran90 Prg. zur Geschwindigkeitsanalyse von</td>
<td>98</td>
</tr>
<tr>
<td>CMP-Daten</td>
<td></td>
</tr>
<tr>
<td>A.2 SLIDE2PS: Fortran90 Prg. zur Auftragung der Querschnitt Messungen</td>
<td>100</td>
</tr>
<tr>
<td>A.3 ASC2AMP: Fortran90 Prg. zur Extrahierung der Amplitudenwerte</td>
<td>103</td>
</tr>
<tr>
<td>A.4 DIXILAND: Fortran90 Prg. zur Berechnung wahrer Geschwindigkeiten</td>
<td>105</td>
</tr>
<tr>
<td>nach Dix</td>
<td></td>
</tr>
<tr>
<td>A.5 RKKFKT: MATHLAB Funktion zur Berechnung theoretischer</td>
<td>106</td>
</tr>
<tr>
<td>Reflexionskoeffizienten</td>
<td></td>
</tr>
<tr>
<td>A.6 ACFKT: MATHLAB Funktion zur Berechnung theoretischer Antennen</td>
<td>107</td>
</tr>
<tr>
<td>charakteristiken</td>
<td></td>
</tr>
<tr>
<td>B Übersicht der gemessenen Rohdaten</td>
<td>109</td>
</tr>
</tbody>
</table>
Abbildungsverzeichnis

2.1	Reflexion und Transmission bei einem Übergang von Medium 1 zu Medium 2	6
2.2	Das Einfallen ebener Wellenfronten im TE-Mode und TM-Mode	7
2.3	MATLAB Programm, um interaktiv mit den Einflüssen der Parameter zu experimentieren	9
2.4	Der Reflexionskoeffizient bei einem Sand-Silt bzw. Tonkontakt	10
2.5	Salz Lufter Kontakt bei 50, 200 und 800 MHz. Mit zunehmender Frequenz nimmt der Phasensprung bei dem Brewsterwinkel leicht zu	10
2.6	Steinsalz Übergang zu Anhydrit, Carnalit und Ton bei 100MHz	11
2.7	Verhalten des Reflexionskoeffizienten bei Ton bei zunehmender Leitfähigkeit	11
2.8	Salzlauge als Reflektor in Salz	12
2.9	Reflexioneigenschaften eines Süßwasserhorizonts in unterschiedlich feuchtem Sand	12
2.10	Dipol auf Dielektrikum	14
2.11	MATLAB Programm, um interaktiv mit den Einflüssen der Parameter zu experimentieren	15
2.12	Antennencharakteristik eines Dips auf Steinsalz bei 50, 200 und 800 MHz	16
2.13	Vergleich der Antennencharakteristik eines Dips auf Anhydrit, Carnalit und Ton bei 100 MHz	17
2.14	Antennencharakteristik eines Dips trockenem Sand	17
2.15	Die Antennencharakteristik auf verschiedenen Medien bei gleicher Skalierung der relativen Amplitude	18
3.1	Schachtanlage Asse Schnitt Südwest-Nordost. Der Pfeil kennzeichnet das Meßgebiet auf der 490m Sohle	20
3.2	Bohrprofile der Horizontalbohrungen auf der 490m Sohle, Bohrung 61/490 liegt dabei auf Profilmeter 15	21
3.3	Typischer Aufbau einer Zero Offset Sektion	22
3.4	Typischer Aufbau einer Variable Offset Sektion, hier bei der Messung mit parallel orientierten Antennen	24
3.5 Übersicht der durchgeführten, bzw. benutzten Prozessing-Schritte .. 25
3.6 Gezeigt ist ein Ausschnitt einer zero-offset Sektion auf der 490m-Sohle: Rohdaten \(\square \) / Preprozessing \(\square \) .. 26
3.7 AGC \(\square \) / MWA, \(y \)-gain Funktion \(\square \) .. 27
3.8 Bandpass \(\Rightarrow \) \(y \)-gain Funktion \(\square \) / \(y \)-gain Funktion \(\Rightarrow \) Bandpass \(\square \) .. 28
3.9 Gleichstromanteil und niederfrequenter Noise \textit{verbiegen} das Nutzsignal .. 28
3.10 1D Notchfilter \(\square \) und 2D \textit{fk} Filter \(\square \) .. 29
3.11 Spurspektrum \(\square \) nach MWA, \(y \)-gain Funktion \(\square \) und nach \textit{fk} Filter \(\square \) .. 30
3.12 Vergleich CMP Daten vor \(\square \) und nach \textit{fk}–Filterung \(\square \) 30
3.13 Die Filterung erfolgt im Frequenz Wellenzahl Bereich .. 31
3.14 2D Mittelwertabzug \(\square \) mit einer Breite von 10 und 60 Spuren .. 31
3.15 Hnbertransformation (Envelope) \(\square \) und Kreuzkorrelation \(\square \) .. 32
3.16 Spiking-Dekonvolution \(\square \): 0–100 ns / 30 ns / 0.5% und 0–500 ns / 100 ns / 0.5% .. 33
3.17 Migration \(\square \) mit der Geschwindigkeit von Steinsalz und Luft, bzw. Lichtgeschwindigkeit .. 33
3.18 Anwendung der \(X^2T^2 \) Methode zur Bestimmung der Geschwindigkeiten .. 35
3.19 Das Geschwindigkeitstiefenmodell wird interaktiv an die Reflectionshyperbeln im CMP Diagramm angepaßt .. 36
3.20 Semblance Analyse der selben CMP Daten .. 36
3.21 Modell eines rechteckigen Hohlraumes in Salz .. 38
3.22 Synthetische Zero Offset Sektion über einem rechteckigen Hohlraumes in Salz .. 39

4.1 3D Ansicht des Meßgebietes auf der 490 m Sohle mit Blickrichtung nach Norden .. 40
4.2 Lage der Kammern der 490 m Sohle und der darunter gelegenen Sohlen auf 511 m und 532 m von oben gesehen .. 41
4.3 Lage der Kammern, seitlich gesehen mit Blickrichtung nach Westen .. 41
4.4 Lage der Messungen auf der 490 m Sohle .. 42
4.5 Vergleich Antennenauflösung .. 43
4.6 Vergleich Antennenauflösung Detailansicht .. 44
4.7 Vergleich Spurspektrum 50 – 400 MHz .. 45
4.8 200 MHz 490m Südostprofil, migriert mit Salzgeschwindigkeit . 46
4.9 200 MHz 490 m Profil im Winkel von ca. 45 Grad zwischen Stoß und Fürste (Hangende), migriert mit Salzgeschwindigkeit
4.10 200 MHz 490 m Sohlenprofil, migriert mit Salzgeschwindigkeit
4.11 200 MHz 490 m Profil in die Fürste hinein, migriert mit Salzgeschwindigkeit
4.12 Wahre Tiefen nach Dix für die 490 m Sohle
4.13 Semblance Analyse der CMP Sektionen
4.14 gemessene CMP Sektion an Lokation E und I in die Sohle hinein
4.15 Semblance Analyse der CMP Sektionen
4.16 gemessene CMP Sektion an Lokation k und M in die Sohle und in die Fürste hinein
4.17 Semblance Analyse der CMP Sektionen
4.18 gemessene CMP Sektion an Lokation q in Kammer 8 in die Sohle hinein
4.19 Semblance Analyse der CMP Sektionen
4.20 gemessene CMP Sektion an Lokation f und g in den Südstoß hinein
4.21 Untergrundmodell für die 490 m Sohle. Die Fürste und Verbindungsstrecken sind aus dem gemessenen Radargramm gepickt und die 511 m Sohle wurde im Modell auf 21 m festgelegt
4.22 Die grob gerasterten synthetischen Radargramme (r.o. Plane Wave Anregung, r.u. Exploding Reflektor) im Vergleich zu der gemessenen Zero Offset Sektion der 490 m Sohle, lo. FK- gefiltert und lu. migriert
4.23 gepicktes Modell der Sohle und synthetisches Radargramm für 200 MHz
4.24 gepicktes Modell des Südstoßes und synthetisches Radargramm für 200 MHz
4.25 Vergleich des gemessenen Radigramms des Südstoßes mit den überlagerten synthetischen Radargrammen aus 4.24 und 4.23
4.26 oben: Tiefenmodell Hangende, unten: Tiefenmodell Südstoß
4.27 oben: Tiefenmodell Fürste unten: Tiefenmodell Sohle

5.1 Übersicht der an einem homogenen Salzpfeiler auf der 800 m Sohle durchgeführten Messungen
5.2 200 Mhz 800 m Rundum Profilmessung zeigt die homogene Struktur des Steinsalz Pfeilers
5.3 200 Mhz 800 m Durchstrahlung (D)
5.4 200 Mhz 800 m Durchstrahlung, Detail, weniger Verstärkung im linearen Anteil der y-gain Funktion
5.5 Abstrahlcharakteristik der 200 MHz Antenne in Steinsalz bei einer Mächtigkeit des Pfeilers von 14 m
Abbildungsverzeichnis

5.6 Abstrahlcharakteristik der 200 MHz Antenne in Steinsalz, wobei die Amplituden in dB angegeben sind .. 67
5.7 Antennenoffset 0.5, 1 und 2 Metern .. 69
5.8 verwendete Antennorientierungen bei Zero Offset Sektionen 70
5.9 Vergleich der Zero Offset Sektionen bei verschiedenen Antennenorientierungen ... 71
5.10 Lage der Messungen auf der 875m Sohle ... 72
5.11 Ausschnitt PS und PZ Messungen auf der 875m Sohle zur Lokation eines luftgefüllten Bohrloches ... 73
5.12 Profilmessungen A, F und G auf der 875m Sohle, Antennen senkrecht zum luftgefüllten Bohrloch geführt. Die Tiefenangaben wurden mit der Geschwindigkeit von Salz berechnet 74
5.13 dito senkrecht zum Bohrloch .. 74
5.14 Streckenquerschnittsmessungen auf der Strecke der 490 m Sohle in der normalen Profildarstellung ... 75
5.15 Photo der Lokation N mit markiertem Querschnitt. Blick Richtung Westen, links ist der Südstoß zu sehen ... 76
5.16 200MHz Streckenquerschnittsmessungen auf 490 m Sohle am Punkt O, wobei die einzelnen Spuren richtungsabhängig aufgetragen wurden ... 77
5.17 200MHz Streckenquerschnittsmessungen auf 490 m Sohle am Punkt N ... 78
5.18 400MHz Streckenquerschnittsmessungen auf 490 m Sohle am Punkt N ... 79
5.19 semblance Analyse .. 81
5.20 Vergleich Antennorientierung senkrecht, parallel und 45 Grad für 50 und 200 MHz bei gleichem Prozessing der Daten 81
5.21 Brewster Winkel Amplituden und Phasenänderung für die Frequenzen 100, 200 und 400 MHz an der Lokation K 82
5.22 Gleiche Messungen für 200 MHz an den Lokationen E, I und Q, für Lokation Q auch mit 400 MHz .. 83
5.23 200Mhz 800m CMP parallel und senkrecht. Salz/Luft Kontakt in einer bekannten Tiefe von 13 m .. 84
5.24 semblance Analyse der CMP Sektion .. 85
5.25 200Mhz bei Lokation J in Südstoß hinein, kein Brewster Einbruch und Phasenverschiebung zu beobachten (genaue Messung mit kleinen Meßabständen und hohem Stacking) 85
5.26 574m Sohle, Anhydrit Block in geringer Tiefe 86

6.1 3D Ansicht von Osten gesehen, mit v=0.12m/ns migriert 88
6.2 3D Ansicht von Westen gesehen, mit v=0.12m/ns migriert 88
6.3 400Mhz über Aufwölbung ... 89
6.4 Semblance Analyse der CMP Sektion 90
6.5 Bei Profilometer 15 gemessene CMP Sektion mit senkrechter und
parallelter Antennenorientierung 90
6.6 Ausschnitt aus den CMP Messungen am Profilometer 15 des
Querprofiles .. 91
6.7 Modell der luftgefüllten Aufwölbungen. Der große untere Be-
reich soll Kammer 8 auf der 511 m Sohle nachbilden 91
6.8 Bild einer solchen Aufwölbung, deren Dimension im Dezimeter
Bereich liegt ... 92

B.1 Nomenklatur der Radardaten 110
B.2 Messungen auf der 469 m Sohle 111
B.3 Messungen auf der 490 m Sohle, Profilübersicht I 112
B.4 Messungen auf der 490 m Sohle, Profilübersicht II 113
B.5 Messungen auf der 490 m Sohle, CMP Übersicht I 114
B.6 Messungen auf der 490 m Sohle, CMP Übersicht II 115
B.7 Messungen auf der 574 m Sohle, Anhydritblock 116
B.8 Messungen auf der 800 m Sohle, homogener Salzpfeiler 117
B.9 Messungen auf der 875 m Sohle, Bohrloch 118
B.10 Messungen auf dem BGR Gelände in Berlin, Spandau 119
Tabellenverzeichnis

2.1 Materialparameter bei 100 MHz 5

3.1 Geologische Legende zu Abbildung 3.1 19

4.1 Lotzeiten und Stapelgeschwindigkeiten der CMP Messungen in die Sohle und die Firste 51

4.2 Lotzeiten und Stapelgeschwindigkeiten der CMP Messungen in den Stiedstoß 51

5.1 Die Ergebnisse der Brewsterwinkelbestimmung bei allen CMP Messungen, die über einem Salz/Luft Kontakt gemessen wurden. 83
Kapitel 1

Einleitung

Dazu wurden im Forschungsbergwerk Asse bei Remlingen auf der 490 m Sohle Untersuchungen durchgeführt. Die bekannten Hohlräume der darunter liegenden 511 m Sohle dienten als einfache Reflektoren.

Neben der Erkundung der Geometrie des Untergrundes, der im Praxisteil I behandelt wird, ist das Hauptziel der vorliegenden Arbeit, zusätzliche Informationen über die Eigenschaften des Reflektors zu erhalten.

Zu diesem Zweck wurden im Praxisteil II Messungen mit verschiedenen Antennenanordnungen und Orientierungen durchgeführt. Besonders interessant waren dabei Variable Offset Sektionen mit parallel orientierten Antennen. Sollte sich bei diesen Sektionen ein Amplitudeneinbruch in einem bestimmten Antennenabstand beobachten, so kann daraus der Brewsterwinkel ermittelt werden. Mit Hilfe dieses Winkels kann bei nichtleitfähigen Medien anhand der bekannten elektrischen Eigenschaften der ersten Schicht und der Tiefe des Reflektors die relative Dielektrizität \(\varepsilon_r \) der zweiten Schicht bestimmt oder wenigstens abschätzt werden. Im gleichen Zusammenhang war die Frage zu klären, in wieweit dies auch für geringleitfähige Materialien gilt. Im Theorieteil wurde dazu das Amplituden- und Phasenverhalten des komplexen Reflexionskoeffizienten für verschiedene Materialien untersucht.

Da zur Erfassung des Brewsterwinkels die Amplituden der Reflexion betrachtet werden, darf eine zweite Größe, die Abstrahlcharakteristik der Antennen, nicht unberücksichtigt bleiben. Dazu wurden im Theorieteil das Abstrahlverhalten eines infinitesimalen Dipols auf einer Grenzschicht für verschiedene Medien untersucht. Im Praktischen Teil II wurden Durchstrahlungsmessungen an einem homogenen Salzpfeiler durchgeführt, um die Antenncharakteristik in Salz zu bestimmen.

Im Praktischen Teil III soll anhand eines Feldbeispiels die Möglichkeiten der Bestimmung des Brewsterwinkels geprüft werden.
Kapitel 2

Theoretische Grundlagen

2.1 Ausbreitung einer EM Welle

2.1.1 In einer Schicht

Radarmessungen werden im MHz-Bereich durchgeführt. In diesem Frequenzbereich übernimmt die Dielektrizität ε anstelle der spezifischen elektrischen Leitfähigkeit σ die wesentliche Rolle bei der Ausbreitung der elektromagnetischen Welle durch die Schicht. Die Maxwell Gleichungen beschreiben die Ausbreitung einer elektromagnetischen Welle in einer Schicht:

\[
\begin{align*}
\nabla \times \vec{E} &= -\frac{\partial \vec{B}}{\partial t} \\
\nabla \times \vec{H} &= \vec{j} + \frac{\partial \vec{D}}{\partial t} \\
\nabla \cdot \vec{B} &= 0 \\
\nabla \cdot \vec{D} &= q
\end{align*}
\]

Dabei werden die folgenden 5 Vektorfeldfunktionen \vec{E}, \vec{D}, \vec{H}, \vec{B}, und \vec{j} benutzt. Über die Materialgleichungen

\[
\begin{align*}
\vec{D} &= \varepsilon \vec{E} \\
\vec{B} &= \mu \vec{H} \\
\vec{j} &= \sigma \vec{E}
\end{align*}
\]

reduziert sich die Zahl auf die beiden Vektorfeldfunktionen \vec{E} und \vec{H}. Die Materialparameter ε, σ und μ, der magnetischen Permeabilität, werden dabei als unabhängig von der Zeit angenommen, wobei sie im allgemeinen Funktionen von der Frequenz sind. Die tensoriellen Größen reduzieren sich zu skalaren Größen, wenn der Untergrund als linear, homogen und isotrop angenommen wird und die elektrischen Eigenschaften unabhängig von Zeit, Temperatur und Druck sind.
Bildet man die Rotation \(\nabla \times \) über die beiden Maxwellgleichungen (2.1) und (2.2) und setzt die Materialgleichungen ein, kann man mit Hilfe der Vektoridentität

\[
\nabla \times \nabla \times \vec{a} = \nabla \nabla \cdot \vec{a} - \nabla^2 \vec{a}
\]

(2.8)
die Wellengleichungen für das elektrische und magnetische Feld im Zeitbereich herleiten:

\[
\nabla^2 \vec{E} - \frac{\mu \sigma}{\partial t} \frac{\partial \vec{E}}{\partial t} - \mu \varepsilon \frac{\partial^2 \vec{E}}{\partial t^2} = 0 \tag{2.9}
\]

\[
\nabla^2 \vec{H} - \frac{\mu \sigma}{\partial t} \frac{\partial \vec{H}}{\partial t} - \mu \varepsilon \frac{\partial^2 \vec{H}}{\partial t^2} = 0 \tag{2.10}
\]

Eine 1-D Fouriertransformation in den Frequenzbereich ergibt die Helmholtzgleichungen\(^1\):

\[
\nabla^2 \vec{E} + (\mu \varepsilon \omega^2 - i \mu \sigma \omega) \vec{E} = 0 \tag{2.11}
\]

\[
\nabla^2 \vec{H} + (\mu \varepsilon \omega^2 - i \mu \sigma \omega) \vec{H} = 0 \tag{2.12}
\]

Man faßt die Größen zusammen und erhält:

\[
\nabla^2 \vec{E} + k^2 \vec{E} = 0 \tag{2.13}
\]

\[
\nabla^2 \vec{H} + k^2 \vec{H} = 0 \tag{2.14}
\]

mit

\[
\hat{k}^2 = \mu \varepsilon \omega^2 - i \mu \sigma \omega \tag{2.15}
\]

\[
\mu = \mu_0 \mu_r \tag{2.16}
\]

\[
\varepsilon = \varepsilon_0 \varepsilon_r \tag{2.17}
\]

\(\varepsilon_r\) und \(\mu_r\) sind dabei die relative Dielektrizitäts- bzw. magnetische Permeabilitätszahl, \(\varepsilon_0\) und \(\mu_0\) die elektrische, bzw. magnetische Feldkonstante im Vakuum. Zur Lösung der Wellengleichung reicht es für viele praktische Anwendungen, eine o.B.d.A in \(z\)-Richtung laufende ebene Welle anzusetzen mit der Kreisfrequenz \(\omega\):

\[
\vec{E} = E_0 \hat{\omega} e^{i(\omega t - k z)} \tag{2.18}
\]

\(^1\)Telegraphengleichung
\[\tilde{E}_0 = \text{Anfangsamplitude} \]
\[k = \text{komplexe Wellenzahl} \]

Dabei reicht es, die Lösung nur für eine Kreisfrequenz \(\omega \) zu betrachten, da ein beliebiger Wellenzug als Linearkombination vieler monofrequenter Signale beschrieben werden kann.

Die komplexe Wellenzahl \(\tilde{k} \) läßt sich definieren als

\[\tilde{k} = \beta \pm i\alpha \quad (2.19) \]

und berechnet sich mit Hilfe von Gleichung (2.15) wie folgt:

\[\beta = \frac{\omega}{c} \sqrt{\frac{\mu_r \varepsilon_r}{2} \left(\sqrt{1 + \left(\frac{\sigma}{\varepsilon_0 \varepsilon_r \omega} \right)^2} + 1 \right)} \quad (2.20) \]
\[\alpha = \frac{\omega}{c} \sqrt{\frac{\mu_r \varepsilon_r}{2} \left(\sqrt{1 + \left(\frac{\sigma}{\varepsilon_0 \varepsilon_r \omega} \right)^2} - 1 \right)} \quad (2.21) \]

Der reale Absorptionskoeffizient \(\alpha \) beschreibt die Dämpfung und \(\beta \) die reale Wellenzahl \(k \), die die Information über die Phasengeschwindigkeit (Ausbreitungsgeschwindigkeit der einzelnen Frequenzen) der Welle in einer Schicht beinhaltet. Damit läßt sich Gleichung (2.18) anschaulich ausdrücken als:

\[\tilde{E} = \tilde{E}_0 e^{-\alpha z} e^{i(\omega t - k z)} \quad (2.22) \]

Der Term

\[\frac{\sigma}{\varepsilon_0 \varepsilon_r \omega} = \frac{1}{Q} \quad (2.23) \]

beschreibt dabei, wie stark eine Welle gedämpft wird. \(Q \) wird als Qualitätsfaktor bezeichnet und beschreibt das Verhältnis von Verschiebungs- zu Leitungsstromdichte. Für \(Q \gg 1 \), was bei geringen Leitfähigkeiten im Radarfall gegeben ist, ist die Dämpfung der elektromagnetischen Welle sehr gering und es werden in der Praxis folgende Näherungen betrachtet:

\[k \approx \frac{\omega}{c} \sqrt{\mu_r \varepsilon_r} \quad (2.24) \]
\[\alpha \approx \frac{\sigma}{2} \sqrt{\frac{\mu_0}{\varepsilon_0} \frac{\mu_r}{\varepsilon_r}} \quad (2.25) \]

Setzt man \(\mu_r = 1 \), was für viele geologische Materialien gültig ist, erhält man für die Phasengeschwindigkeit \(v_{ph} \) und die Dämpfung \(\alpha \) folgende Gleichungen:
Ausbreitung einer EM Welle

<table>
<thead>
<tr>
<th>Material</th>
<th>ε_r</th>
<th>σ (mS/m)</th>
<th>ν (m/nsec)</th>
<th>α (dB/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Luft</td>
<td>1</td>
<td>0</td>
<td>0.30</td>
<td>0</td>
</tr>
<tr>
<td>Süßwasser</td>
<td>80</td>
<td>0.5</td>
<td>0.033</td>
<td>0.1</td>
</tr>
<tr>
<td>Salzwasser</td>
<td>80</td>
<td>$3 \cdot 10^4$</td>
<td>0.01</td>
<td>$1 \cdot 10^3$</td>
</tr>
<tr>
<td>Eis</td>
<td>3-4</td>
<td>0.01</td>
<td>0.16</td>
<td>0.01</td>
</tr>
<tr>
<td>trockener Sand</td>
<td>3-5</td>
<td>0.01</td>
<td>0.15</td>
<td>0.01</td>
</tr>
<tr>
<td>gesättig. Sand</td>
<td>20-30</td>
<td>0.1-1.0</td>
<td>0.06</td>
<td>0.03-0.3</td>
</tr>
<tr>
<td>Ton</td>
<td>5-40</td>
<td>2-10003</td>
<td>0.06</td>
<td>1-300</td>
</tr>
<tr>
<td>Silt/Schluff</td>
<td>5-30</td>
<td>1-100</td>
<td>0.07</td>
<td>1-100</td>
</tr>
<tr>
<td>trockenes Salz</td>
<td>5-6</td>
<td>0.01-1</td>
<td>0.13</td>
<td>0.01-1</td>
</tr>
<tr>
<td>Steinsalz</td>
<td>5.8</td>
<td>0.6</td>
<td>0.125</td>
<td>0.4</td>
</tr>
<tr>
<td>Anhydrit</td>
<td>5.67</td>
<td>0.263*</td>
<td>0.126*</td>
<td>0.18*</td>
</tr>
<tr>
<td>Carnallinit</td>
<td>9</td>
<td>3.4</td>
<td>0.10</td>
<td>1.9</td>
</tr>
</tbody>
</table>

Tabelle 2.1: Einige typische Materialparameter bei 100 MHz (nach [Davis and Amann(1989)], [Winter(1982)], [Yaramanci and Flach(1990)]*), Angaben mit * beziehen sich auf Messungen mit 60 MHz

\[
v_{ph} = \frac{\omega}{k} \approx \frac{c}{\sqrt{\varepsilon_r}}
\]

\[
\alpha \approx \sigma \frac{377}{2\sqrt{\varepsilon_r}}
\]

2.1.2 Übergang zwischen zwei Schichten

2.1.2.1 Bei nicht leitfähigen Medien

Beim Übergang zwischen zwei Schichten werden in nicht leitfähigen Medien\(^2\) reflektierte und transmittierte Radarsignale an Grenzflächen vollständig durch die Fresnel Gleichungen beschrieben.

Die Reflexions- und Transmissionskoeffizienten sind einfache Funktionen des relativen Permittivitätskontrastes und beschreiben das Verhältnis zwischen der Amplitude des einfallenden und des reflektierten bzw. transmittierten E-Feldvektors. Da sich jeder beliebige, linear polarisierte Feldvektor als Linearkombination eines Feldvektors parallel und senkrecht zur Einfallsebene

\(^2\) perfekte Dielektrika
Abbildung 2.1: Reflexion und Transmission bei einem Übergang von Medium 1 zu Medium 2. Gezeigt sind die einfallenden und reflektierten Feldvektoren für \(E \) und \(H \) für den TE-Mode. Dabei steht der \(E \) Feldvektor senkrecht auf der Einfallsebene und der \(H \) Feldvektor liegt in der Einfallsebene. Im TM-Mode (hier nicht dargestellt) steht der \(H \) Feldvektor senkrecht auf der Einfallsebene. \(E, H \) und Wellenvektor \(k \) sind dabei immer orthogonal zueinander umschrieben läßt, genügt es im Folgenden, nur diese beiden Anteile zu betrachten.

Der Reflexionskoeffizient \(r \) berechnet sich für den Anteil des \(E \)-Feldvektors, der senkrecht zur Einfallsebene ist, wie folgt (TE-Mode\(^3\)):

\[
r_{\perp} = \frac{|E_r|}{|E_e|} \text{ mit } \quad r_{\perp} = \frac{\mu_{r2} k_1 \cos \Theta_1 - \mu_{r1} k_2 \cos \Theta_2}{\mu_{r2} k_1 \cos \Theta_1 + \mu_{r1} k_2 \cos \Theta_2} \tag{2.29}
\]

Dabei gilt: \(|k_e| = |k_r| = k_1\) und \(|k_t| = k_2\). Für den parallelen Anteil ergibt sich (TM-Mode\(^4\))

\[
r_{\parallel} = \frac{|H_t|}{|H_e|}, \text{ wobei } \quad r_{\parallel} = \frac{\mu_{r1} k_2 \cos \Theta_1 - \mu_{r2} k_1 \cos \Theta_2}{\mu_{r1} k_2 \cos \Theta_1 + \mu_{r2} k_1 \cos \Theta_2} \tag{2.31}
\]

Das verallgemeinerte Snellius’sche Brechungsgesetz stellt sich folgendermaßen dar:

\[
\frac{k_2}{k_1} = \frac{\sin \Theta_1}{\sin \Theta_2} \tag{2.32}
\]

\(^3\) transverse electric
\(^4\) transverse magnetic

2.1.2.2 Bei leitfähigen Medien

Sind jedoch beide Medien leitfähig, werden die Reflexionskoeffizienten zu komplexwertigen Funktionen, die sowohl von der relativen Permittivität abhängen, als auch von der Leitfähigkeit und der Frequenz. Zusätzlich zur komplexen Wellenzahl \(\tilde{k} \) in Gleichung (2.19) wird die komplexe relative Permittivität \(\tilde{\varepsilon}_r \) definiert:

\[
\tilde{\varepsilon}_r = \varepsilon_r + i \frac{\sigma}{\omega \varepsilon_0}
\]

(2.33)

Da im allgemeinen leitfähige geologische Materialien frei sind von elektrischen Ladungen und Strömen, herrschen an der Grenzfläche zwischen zwei Medien die gleichen Bedingungen für das elektrische und magnetische Feld wie im Fall von zwei nicht leitfähigen Medien. Analog dazu lassen sich die komplexen Fresnel-Gleichungen und das Snellius'sche Brechungsgesetz für komplexwertige Winkel aufstellen:

\[
\tilde{r}_\perp = \frac{\mu_{r2} \tilde{k}_1 \cos \Theta_1 - \mu_{r1} \tilde{k}_2 \cos \Theta_2}{\mu_{r2} \tilde{k}_1 \cos \Theta_1 + \mu_{r1} \tilde{k}_2 \cos \Theta_2}
\]

(2.34)
\[
\vec{r}_\parallel = \frac{\mu_{r1}k_2 \cos \Theta_1 - \mu_{r2}k_1 \cos \Theta_2}{\mu_{r1}k_2 \cos \Theta_1 + \mu_{r2}k_1 \cos \Theta_2} \quad (2.35)
\]
\[
k_1 \frac{k_2}{k_2} = \frac{\sin \Theta_2}{\sin \Theta_1} \quad (2.36)
\]
Man substituiert für \(k_2\) und \(\Theta_2\)
\[
\hat{k}_2 \cos \Theta_2 = q + ip \quad (2.37)
\]
wobei sich \(p\) und \(q\) wie folgt berechnen lassen:
\[
p = k_2 \alpha_2 - k_1 \alpha_1 \sin^2 \theta_1 \quad (2.38)
\]
\[
q = \left\{ \frac{1}{2}[(k_2^2 - \alpha_2^2) - (k_1^2 - \alpha_1^2) \sin^2 \theta_1] + \frac{1}{2}\right\} \left\{ (k_2^2 + \alpha_2^2)^2 + \sin^4 \theta_1 (k_1^2 + \alpha_1^2)^2 - 2\sin^2 \theta_1 [(k_1^2 - \alpha_1^2)(k_2^2 - \alpha_2^2) + 4k_1 \alpha_1 k_2 \alpha_2] \right\}^{\frac{1}{2}} \quad (2.39)
\]
Damit erhält man für die Reflexionskoeffizienten für die senkrechten und parallel polarisierten elektrischen Felder folgende Gleichungen:
\[
\vec{r}_\perp = \frac{\mu_{r2}k_1 \cos \Theta_1 - \mu_{r1}q}{\mu_{r2}k_1 \cos \Theta_1 + \mu_{r1}q} + i \frac{\mu_{r2} \alpha_1 \cos \Theta_1 - \mu_{r1}p}{\mu_{r2} \alpha_1 \cos \Theta_1 + \mu_{r1}p} \quad (2.40)
\]
\[
\vec{r}_\parallel = \frac{\mu_1(k_2^2 - \alpha_2^2) \cos \Theta_1 - \mu_2(k_1 q - \alpha_1 p)}{\mu_1(k_2^2 - \alpha_2^2) \cos \Theta_1 + \mu_2(k_1 q - \alpha_1 p)} + i \frac{2 \mu_2 \alpha_2 \mu_1 \cos \Theta_1 - \mu_2(\alpha_1 q + k_1 p)}{2 \mu_2 \alpha_2 \mu_1 \cos \Theta_1 + \mu_2(\alpha_1 q + k_1 p)} \quad (2.41)
\]
Die Herleitung der Ausdrücke für die Fresnel-Gleichungen für leitfähige Medien ist in [Lehmann(1996)] beschrieben. Da für die meisten geologischen Materialien \(\mu_r = 1\) gilt, können die Gleichungen für viele geophysikalische Fälle weiter vereinfacht werden\(^5\).

Im Folgenden wurden die Amplituden und Phasen von \(\vec{r}_\perp\) und \(\vec{r}_\parallel\) für verschiedene Medien in Abhängigkeit des Einfalls winkels berechnet.

Die Modelle beschreiben für hochfrequente EM Wellen diesen Fall in vielen realistischen Situationen in guter Nährung, verlieren aber bei abnehmenden Frequenzen und zunehmender Leitfähigkeit ihre Gültigkeit.

\(^5\)Die Gleichung läßt sich weiter vereinfachen, wenn man nur Zero Offset Sektionen betrachtet. Dann kann der Offset zwischen den Antennen vernachlässigt werden und der Term \(\cos \Theta_1\) wird zu 1.
Abbildung 2.3: MATLAB Programm, um interaktiv mit den Einflüssen der Parameter zu experimentieren

2.2 Theoretisches Verhalten des komplexen Reflexionskoeffizienten

Bild 2.3 zeigt das Programm RKK, das in der MATLAB Umgebung durch Aufruf des M-files RKK gestartet wird. Es erlaubt das Verhalten von Amplitude und Phase des komplexen Reflexionskoeffizienten zu studieren, wobei die elektrischen Eigenschaften der aneinander grenzenden Halbräume variiert werden können. Die relative Permeabilität \(\mu_r \) beider Halbräume wurde auf 1 festgesetzt, da dies für die meisten geologischen Materialien zutrifft. In den folgenden Abb. 2.4 bis 2.9 ist das Verhalten an ausgewählten Beispielen gezeigt. Grau dargestellt der Reflexionskoeffizient bei senkrechter Profilrichtung orientierten Antennen, schwarz für den parallelen Fall.

Besonders interessant ist der Winkel, unter dem die Amplitude sehr stark abnimmt, dem Brewster Winkel, der nur bei paralleler Antennenorientierung auftritt und dies besonders stark, wenn das reflektierende Medium nichtleitfähig ist. Der Einbruch schwächt sich mit zunehmender Leitfähigkeit ab. Begleitet wird die Amplitudenabnahme durch eine Phasenänderung von 180 Grad bei nicht- oder nur geringleitfähigen Medien. Bei nichtleitfähigen Medien erfolgt ein Phasensprung, bei leitfähigen Medien ändert sich die Phase über einen größeren Winkelbereich hinweg. Interessant ist dieser Winkel besonders deshalb, weil man bei Kenntnis der elektrischen Eigenschaften der ersten Schicht durch Messen dieses Winkels theoretisch die relative Dielektrizität \(\varepsilon_r \) der zweiten Schicht mit Hilfe der folgenden Gleichungen bestimmen...
Abbildung 2.4: Sand Silt bzw. Tonkontakt. Im ersten Fall wird der Reflektionskoeffizient durch einen reinen ε_r Kontrast bestimmt, im zweiten Fall herrscht ein reiner σ Kontrast vor. Der dritte Fall spiegelt einen kombinierten $\varepsilon_r\sigma$ wieder: die Grenzfläche zwischen gering leitfähigem Sand zu gut leitender Tonschicht.

Abbildung 2.5: Salz Luft Kontakt bei 50, 200 und 800 MHz. Mit zunehmender Frequenz nimmt der Phasensprung bei dem Brewsterwinkel leicht zu
Abbildung 2.6: Steinsalz Übergang zu Anhydrit, Carnalitit und Ton bei 100MHz

Abbildung 2.7: Verhalten des Reflexionskoeffizienten bei Ton bei zunehmender Leitfähigkeit
Abbildung 2.8: Salzlauge mit unterschiedlicher Leitfähigkeit als Reflektor in Salz. Das Modell soll eindringendes Wasser darstellen, das durch die Lösung in Salz zunehmend saliner wird und damit leitfähiger

Abbildung 2.9: Reflexionseigenschaften eines Süßwasserhorizonts in unterschiedlich feuchtem Sand
Für die Abschätzung von \(\varepsilon_{r2} \) wird vom Fall eines perfekten Dielektrikums ausgegangen und die Leitfähigkeit \(\sigma \) als 0 angenommen. Die relative Permeabilität \(\mu_r \) wird als 1 gesetzt, was auch für viele geologische Medien zutrifft. Damit reduziert sich das Snellius'sche Brechungsgesetz mit Gleichung (2.20) zu

\[
\frac{\sin \Theta_1}{\sin \Theta_2} = \frac{k_2}{k_1} = \sqrt{\frac{\varepsilon_{r2}}{\varepsilon_{r1}}} = n_{12},
\]

wobei \(n_{12} \) den relativen Brechungsindex darstellt. Für den Fall von \(\varepsilon_{r2} > \varepsilon_{r1} \) wird für jeden Einfallsinkel \(\Theta_1 \) Energie in das zweite Medium transmittiert. Für den Fall von \(\varepsilon_{r2} < \varepsilon_{r1} \), der auch bei einem Salz/Luft Kontakt herrscht, gilt dies nur solange die Bedingung \(n_{12} \sin \Theta_1 > 1 \) ist. Für größere Winkel kommt es zur Totalreflexion, wo sämtliche Energie an der Grenzschicht reflektiert wird.

Mit (2.42) läßt sich der Reflexionskoeffizient \(r_\parallel \) für perfekte Dielektrika aus (2.31) vereinfachen:

\[
r_\parallel = \frac{\tan(\Theta_1 - \Theta_2)}{\tan(\Theta_1 + \Theta_2)}
\]

Für den Fall \((\Theta_1 + \Theta_2) \to \frac{\pi}{2} \) geht \(\tan(\Theta_1 + \Theta_2) \to \infty \) und \(r_\parallel \) geht gegen 0. Reflektierte und Refraktierte stehen in diesem Fall genau senkrecht aufeinander und mit \(\sin \Theta_2 = \sin(\frac{\pi}{2} - \Theta_1) = \cos \Theta_1 \) wird aus (2.42)

\[
\frac{\sin \Theta_1}{\cos \Theta_1} = \tan \Theta_1 = \sqrt{\frac{\varepsilon_{r2}}{\varepsilon_{r1}}} = n_{12},
\]

wobei der Winkel \(\Theta_1 \), der (2.44) erfüllt, als Brewsterwinkel bezeichnet wird.

Kann man den Winkel durch eine Messung bestimmen, kann \(\varepsilon_{r2} \) des Reflektors bei bekannter Dielektrizität \(\varepsilon_{r1} \) und Geschwindigkeit \(v_1 \) des ersten Mediums bestimmt werden:

\[
\varepsilon_{r2} = \varepsilon_{r1} \tan^2 \Theta_1 \quad (2.45)
\]

\[
\varepsilon_{r2} = \varepsilon_{r1} \left(\frac{x_1}{t_1 v_1}\right)^2 \quad (2.46)
\]

mit

\[
x_1 = \text{Antennenabstand}
\]

\[
t_1 = \text{Lotzeit des Reflektors}
\]

Unglücklicherweise wird die Amplitude zusätzlich durch die Antennencharakteristik beeinflußt und es finden gerade bei paralleler Antennenorientierung Einbrüche in der Amplitude statt, die im folgenden Abschnitt näher untersucht werden.
2.3 Abstrahlcharakteristik eines Dipsols

\[
E_{1\Theta} = \frac{\cos \Phi}{n} \left[\frac{\cos^2 \Theta}{\cos \Theta + \sqrt{n^2 - \sin^2 \Theta}} - \sin^2 \Theta \cos \Theta \frac{\cos \Theta - \sqrt{n^2 - \sin^2 \Theta}}{n^2 \cos \Theta + \sqrt{n^2 - \sin^2 \Theta}} \right] \tag{2.47}
\]

\[
E_{1\Phi} = \frac{1}{n} \left[\frac{\cos \Theta \sin \Phi}{\cos \Theta + \sqrt{n^2 - \sin^2 \Theta}} \right] \tag{2.48}
\]

wobei die Gleichungen im Dielektrikum für den Winkelbereich \(\pi - \theta_c \leq \theta \leq \pi \) gelten.

\[
E_{2\Theta} = \frac{1}{n} \left[\sin^2 \Theta \cos \Theta \frac{\sqrt{1 - n^2 \sin^2 \Theta} + n \cos \Theta}{\sqrt{n^2 - \sin^2 \Theta}} \right. \tag{2.49}

- \left. \frac{\cos^2 \Theta}{\sqrt{1 - n^2 \sin^2 \Theta} - n \cos \Theta} \right]
\]

\[
E_{2\Phi} = \frac{\cos \Theta \sin \Phi}{\sqrt{1 - n^2 \sin^2 \Theta} - n \cos \Theta} \tag{2.50}
\]

mit

\[
\tilde{n} = \sqrt{\varepsilon_r + i \frac{\sigma}{\omega \varepsilon_0}} \quad \text{(komplexer Brechungsindex)} \tag{2.51}
\]
Abstrahlcharakteristik eines Dipols

Abbildung 2.11: MATLAB Programm, um interaktiv mit den Einflüssen der Parameter zu experimentieren

\[
\Theta_r = \frac{1}{\sin \frac{n}{n}} \quad \text{(kritischer Winkel)} \quad (2.52)
\]

\[
n^2 = \varepsilon_r \quad (2.53)
\]

Die Gleichungen werden ungültig für Medien, wo Real- und Imaginärteil des Brechungsindex gleiche Größenordnungen einnehmen.

Das im Bild 2.11 gezeigte Programm wird in der MATLAB Umgebung durch Aufruf des M-files AC gestartet und erlaubt die Antennencharakteristik eines Dipols bei unterschiedlichen elektrischen Eigenschaften der Halbräume zu studieren. Die relative Permeabilität \(\mu_r\) beider Halbräume wurde wie im Bild auf 1 festgesetzt, da dies für die meisten geologischen Materialien trifft. Die folgenden Abbildungen 2.12, 2.13 und 2.14 zeigen einen Auszug der betrachteten Fälle. Zu beachten ist die unterschiedliche Skalierung der relativen Amplituden bei der Polardarstellung. Grundsätzlich zeigt sich bei senkrechter Antennenanordnung (grau dargestellt), die bei Radarmessungen standardmäßig verwendet wird, eine zweilobige Struktur im dielektrischen Medium. Dies bedeutet, dass die maximale Empfindlichkeit bzw. Abstrahlung nicht direkt unterhalb der Antenne herrscht, sondern sich nach beiden Seiten richtet. Im parallelen Fall zeigen sich 1 Haupt- und 2 Nebenloben, die durch scharfe Einbuchtungen in der Amplitude getrennt sind.
Abbildung 2.12: Antennencharakteristik eines Dipols auf Steinsalz bei 50, 200 und 800 MHz. Amplituden- und Phasenbild bleiben im Grundcharakter gleich. Mit zunehmender Frequenz bricht die Amplitude im parallelen Fall stärker ein und der Phasensprung nimmt zu, bleibt aber deutlich unter 90 Grad

Der Winkel, unter dem diese Amplituden abnehmen, ist dabei abhängig von Material, wie in Abb. 2.15 gezeigt ist und erfolgt beispielsweise bei Salz bei einem Winkel von 25 Grad.

Abstrahlcharakteristik eines Dipols

Abbildung 2.13: Vergleich der Antennencharakteristik eines Dipols auf Anhydrit, Carnalit und Ton bei 100 MHz. Im Vergleich zum Anhydrit nimmt die Amplitude im Ganzen ab und die Einbrüche in der Amplitude im parallelen Fall treten bei kleineren Winkeln auf.

Abbildung 2.14: Antennencharakteristik eines Dipols auf trockenem Sand bei 100 MHz, wobei die Feuchtigkeit von links nach rechts zunimmt.
Abstrahlcharakteristik eines Dipols

antenna characteristic of an infinitesimal dipol lying on an dielectric media

Abbildung 2.15: Die Antennencharakteristik auf verschiedenen Medien bei gleicher Skalierung der relativen Amplitude
Kapitel 3

Praktische Grundlagen

3.1 Allgemeine Geologie der Asse

<table>
<thead>
<tr>
<th>km</th>
<th>Mittlerer Keuper</th>
</tr>
</thead>
<tbody>
<tr>
<td>ku</td>
<td>Unterer Keuper</td>
</tr>
</tbody>
</table>

so	Oberer Buntsandstein
sm	Mittlerer Buntsandstein
su	Unterer Buntsandstein

mo	Oberer Muschelkalk
mn	Mittlerer Muschelkalk
nm	Unterer Muschelkalk

K2c	Carnalit
T4	Roter Salzton
so1Na	Steinsalz im Oberen Buntsandstein
mmNa	Steinsalz im Mittleren Buntsandstein

Na4	Aller Steinsalz (Zechstein4)
Na3	Leine Steinsalz (Zechstein3)
Na2	Staffurt Steinsalz (Zechstein2)
T5/A5	Oberer Salzton/Anhydrit
so1A	Anhydrit im Oberen Buntsandstein
A4	Pegmatit-Anhydrit
A3	Hauptanhydrit
T3	Grauer Salzton
q	Quartär

Tabelle 3.1: Geologische Legende zu Abbildung 3.1
Abbildung 3.1: Schachtanlage Asse Schnitt Südwest-Nordost. Der Pfeil kennzeichnet das Meßgebiet auf der 490m Sohle.
Abbildung 3.2: Bohrprofile der Horizontalbohrungen auf der 490_m Sohle; Bohrung 61/490 liegt dabei auf Profilmeter 15
Abbildung 3.3: Typischer Aufbau einer Zero Offset Sektion

3.2 Prinzip der Datenaufnahme

Zur Messung der Radarsektionen wurde das RAMAC GPR der Fa. MALÅ GEOSCIENCE1 mit folgenden nicht abgeschirmten widerstandsgedämpften Dipolantennen verwendet:

<table>
<thead>
<tr>
<th>Frequenz (MHz)</th>
<th>Wellenlänge (m)</th>
<th>Baukänge (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>6</td>
<td>2.05</td>
</tr>
<tr>
<td>100</td>
<td>3</td>
<td>1.05</td>
</tr>
<tr>
<td>200</td>
<td>1.5</td>
<td>0.54</td>
</tr>
<tr>
<td>400</td>
<td>0.75</td>
<td>0.54</td>
</tr>
</tbody>
</table>

Es wurden drei Typen von Messungen durchgeführt:

- Zero Offset Sektionen (Profilmessungen)
- Variable Offset Sektionen (CMP Messungen)
- Durchstrahlungen

Bild 3.3 zeigt den typischen Aufbau für eine Zero Offset Sektion. Eine Person trägt den Halter mit den Send- und Empfangseinheiten. An diesen können die Antennen verschiedener Frequenz angeschlossen werden. Im Bild sind die 400 MHz Antennen in einer Ausrichtung senkrecht zur Profilrichtung zu sehen. Der Abstand der Antennen kann durch verschiedene Holzstangen verändert

1jesper.emilsson@malags.se oder www.malags.se
Prinzip der Datenaufnahme

werden, wobei hier die meistverwendete Konfiguration von 1 m Abstand gezeigt ist. Über Lichtleiter erhalten Sender und Empfänger von der RAMAC Zentraleinheit ein Triggersignal\(^2\), um den Sendepuls von ca. 1000 V auszustrahlen, bzw. die Aufzeichnung zu starten. Aus dem Blickwinkel der Seismik würde man mit einer Anregungsquelle und einem Geophon arbeiten. Über ein zweites Lichtleiterkabel überträgt der Empfänger die in 16 Bit Amplitudewerte A/D gewandelten Daten digital an die RAMAC, die die Daten speichert und stapelt und anschließend dem Laptop übergibt.

Da mit sehr hohen Samplingfrequenzen gearbeitet werden muß, erfolgt das Sampling der aufzeichnenden Spur nicht in einem Block, sondern wird in viele Teilmessungen untergliedert und jeweils nur ein bestimmter Zeitausschnitt aufgezeichnet. Damit setzt sich eine Spur mit einer typischen Aufzeichnungsduer von 526 ns (1024 Samples bei einer Sampling Frequenz von 1946 MHz) aus 1024 Einzelmessungen (Schüßen) zusammen. Zusätzlich werden die Daten gestapelt, um das Nutzsignal hervorzuheben gegenüber unkorrelierten Störungen und Rauschen. Typischerweise werden die Daten 64-fach gestapelt, sodaß sich die Spur aus mehr als 64.000 Einzelmessungen zusammensetzt. Die Meßdauer für eine Spur beträgt dann 0.65 Sekunden. Bei den in dieser Arbeit vorgenommenen Messungen wurde die Zahl der Stapelungen sogar bis auf 256 erhöht, da dies deutliche Signalverbesserung bei gestörten Messungen ergab. Dabei können die Werte für Samplingfrequenz, Aufzeichnungsduer und Stapelanzahl nicht beliebig gewählt werden und werden durch die resultierende Meßdauer pro Spur begrenzt. Zusammenfassend müssen die Meßparameter so gewählt werden, daß folgende Kriterien erfüllt sind:

2. Die Aufzeichnungsduer muß so gewählt sein, daß der Tiefenbereich, der erkundet werden soll, erreicht wird.

4. Meßfortschritt und Auflösung der Daten in Profilrichtung. Eine Meßduer von 0.3-0.6 sec bei einem Meßabstand von 0.1 m erwies sich für die durchgeführten Einzelprofile noch als gut praktikabel.

Diese Parameter werden am Laptop vor jeder Messung im RAMAC/GPR Meßprogramm in der Version 2.28 festgelegt. Während der Messung kann ein Teilausschnitt\(^3\) der Daten online am Bildschirm mitverfolgt werden.

\(^{2}\) Es ist zu beachten, daß Sende und Empfänger Triggerkabel nicht vertauscht werden, was zu einer Aufzeichnung der Daten in zeitlich ungekehrter Darstellung führt, d.h. die direkten Wellen werden zeitlich als letztes dargestellt. Die nachträgliche zeitliche Umsortierung der Daten läßt sich nicht durch einfache Headermanipulation bewerkstelligen und führte dazu, daß von Herrn Sandmeier in REFLEX ein Filter \textit{Y-Achse spiegeln} dankenswerterweise hinzugefügt wurde.

\(^{3}\) Es erweist sich bei der praktischen Messung vor Ort als sehr hinderlich, daß nicht der gesamte Zeitbereich einer Spur gleichzeitig online zu sehen ist. Die optimale Aufzeichnungs-
Prinzip der Datenaufnahme

Abbildung 3.4: Typischer Aufbau einer Variable Offset Sektion, hier bei der Messung mit parallel orientierten Antennen

Die Messung einer Spur kann manuell, zeitlich oder räumlich getriggert werden. Bei allen Sektionen wurde die Spuraufzeichnung mittels Fadentriggerung ausgelöst.

Die Stromversorgung erfolgt mit doppelten Akkusätzen, so daß auch ohne vorhandenem Netzstrom 1 Tag gemessen werden kann. Dabei ist zu beachten, daß die Geräte möglichst 5–10 Minuten vor der eigentlichen Messung eingeschaltet werden, damit sich die Elektronik stabilisieren kann.

Bild 3.4 zeigt den Aufbau einer Variable Offset Sektion, wobei im Bild die Antennen parallel zur Profilrichtung ausgerichtet sind. Prinzipiell erfolgt die Messung wie bei den Profilmessungen, nur sind hier Empfänger und Sender getrennt. Bei der Messung wird der Abstand von Empfänger und Sender sukzessiv vergrößert, wobei zwei gegenläufig aufgetrommelte Schnüre Empfänger und Sender auf gleichem Abstand zum Mittelpunkt der Messung halten. Zur Durchführung der Messung werden 3 Personen benötigt: 2 Personen, die die Antennen nach außen führen und die dritte, die die Messung startet und die Abstandsschnüre auf Spannung hält.

Auch bei den Durchstrahlungsmessungen werden Empfänger und Sender getrennt eingesetzt, wobei hier der Sender ortsfest bleibt und nur der Empfänger bewegt wird.

dauer von Erstinsatz der direkten Luft- und Bodenwelle bis zum interessierenden Tiefenbereich läßt sich nicht während der Messung, sondern erst nach jeder Messung unabhängig kontrollieren. Erst die Darstellung der Daten in REFLEX ermöglicht die Ansicht der gesamten Sektion, was besonders bei der Beurteilung von Radardaten wichtig ist. Eine skalierbare Darstellung der Daten im RAMAC Meßprogramm wäre sehr wünschenswert.
Abbildung 3.5: Übersicht der durchgeführten, bzw. benutzten Prozessing Schritte. Fett gedruckte Schritte bedeuten die standardmäßig auf die im praktischen Teil verwendeten Daten angewandten Prozesse

3.3 Dataprozessing

Im ersten Schritt müssen die Rohdaten, die in einem RAMAC eigenen Format liegen, nach REFLEX importiert werden, um in ein REFLEX eigenes Format umgewandelt zu werden (A). Im zweiten Schritt erfolgen die Bestimmung der Ersteinsätze, ein Nullabgleich und ein Deklipping der Daten. Die Ersteinsätze werden mit Hilfe der direkten Luftwelle bestimmt und vorher kommende Daten werden abgeschnitten. Der Nullabgleich muß erfolgen, um den Gleichstromanteil in den Daten zu eliminieren\(^5\). Das Deklipping der Da-

\(^4\)sandmeier@software.kasuttle.de oder www.shuttle.de/software/

\(^5\)ohne diesen Schritt macht keine Verstärkung der Daten Sinn
Abbildung 3.6: Gezeigt ist ein Ausschnitt einer zero-offset Sektion auf der 490m Sohle: Rohdaten A / Preprozessing B

ten erfolgt präventiv, um eine Kantenbildung in der Amplitude bei eventueller Übersteuerung der Daten zu vermeiden. Dies unterdrückt Geisterreflexionen bei nachfolgend angewandten digitalen Filtern B. Störungen wurden prinzipiell nicht genutzt. Abb. 3.6 zeigt die Daten vor der Verstärkung.

Im dritten Schritt wird der Amplitudenverlust, bedingt durch die Absorption und die sphärische Divergenz der EM Wellen durch eine Verstärkungsfunktion ausgeglichen. Zusätzlich muß noch niederfrequenter Noise mit einem Bandpassfilter entfernt werden. Wendet man den Bandpass vor der Verstärkung an B, bekommt man Geistersignale am Anfang und Ende jeder Spur, die alle Spuren gleich überlagern. Wendet man den Filter nach der Verstärkung an E, kommt es nicht dazu, aber man verliert bei den gestörten Spuren das Nutzsignal (Abb. 3.8). Deshalb wurde ein Mittelwertabzug (MWA) durchgeführt. Dabei wird ein gleitender Mittelwert in einem vorgegebenen Zeitbereich für jeden Zeitwert einer Spur gebildet und von diesem abgezogen. Als Zeitbereich wurde die Periodendauer der entsprechenden Hauptfrequenz verwendet:

<table>
<thead>
<tr>
<th>Frequenz (MHz)</th>
<th>Periodendauer (ns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>20</td>
</tr>
<tr>
<td>100</td>
<td>10</td>
</tr>
<tr>
<td>200</td>
<td>5</td>
</tr>
<tr>
<td>400</td>
<td>2.5</td>
</tr>
</tbody>
</table>

Dieser Filter erwies sich sehr wirkungsvoll, um die tiefrequenten Störansteile zu eliminieren und wurde vor der eigentlichen Verstärkung standardmäßig auf die
Dataprozessing

Abbildung 3.7: AGC () / MWA, y-gain Funktion ()

Daten angewendet (). Abb. 3.7 zeigt das Ergebnis im Vergleich zu einer AGC\(^6\) Verstärkung der Daten (). Der AGC wurde nicht benutzt, da dabei die Amplitudeninformationen der Daten verloren gehen. Für die Verstärkung wurde eine y-gain Funktion mit linearem und exponentiellen Anteil benutzt. Der exponentielle Anteil wurde für alle Messungen mit 0.18 dB/m angenommen, was der Dämpfung von Steinsalz entspricht [Yaramanci and Flach (1990)]. Der lineare Anteil wurde für jede Frequenz so angepaßt, daß die Reflektoren gut im Radarbild sichtbar sind.

Im vierten Schritt soll der Signal/Rauschabstand weiter verbessert werden. Die streifenförmigen Störerstrahlungen, die vermutlich durch Rückkopplung des Radarsenders mit dem Grubenfunk oder anderen technischen Geräten zeitweise entstehen, konnten mit einem Notchfilter () nicht wirksam unterdrückt werden, ohne auch Nutzsignal zu verlieren. Die Störfrequenzen in diesem Beispiel liegen knapp über 100 MHz, 400 MHz und 600 MHz, wobei die 100 MHz mitten im Bereich des Nutzsignals liegt. Erst die Anwendung eines FK-Filters eliminierte die Störungen bei nur leichten Glättungerscheinungen des Nutzsignals (Abb. 3.10, 3.11 und 3.12). Die Spuranzahl bei langen Profilen muß dabei reduziert werden, da der Speicher für die FK Filterung unter MS DOS beschränkt ist. Dies erfolgt, indem benachbarte Spuren gestapelt werden.

Um das Ringing, die direkte Welle oder Störungen, die parallel über alle Spuren laufen zu unterdrücken, wurde der 2D Mittelwertabzug benutzt. Dabei wird der Mittelwert eines Samples mit einer wählbaren Breite über mehrere benachbarte Spuren gebildet und vom aktuellen Sample abgezogen. Abb. 3.14 zeigt die Wirkung des Filters bei 10 und 60 Spuren Breite. Bei klein gewähl-

\(^6\) automatic gain control
Abbildung 3.8: Bandpass \Rightarrow y-gain Funktion \mathbb{G} / y-gain Funktion \Rightarrow Bandpass \mathbb{G}

Abbildung 3.9: Gleichstromanteil und niederfrequenter Noise verbiegen das Nutzsignal
Dataprozessing

ter Breite unterdrückt er neben den Störungen auch horizontale Reflektoren. Dies wird durch eine größere Breite minimiert, aber man erzeugt sich Geisterringing zum Spurende.

Ziel der Migration ist es, die Reflexions- und Diffraktionshyperbeln auf ihren Ursprung zurückzuführen und bei steil stehenden Reflektoren die Einsätze an ihre wahre Lage zu versetzen. Im vorliegenden Fall im Salinar kann erst einmal von konstanten Geschwindigkeiten ausgegangen werden, sodaß zuerst mit einer Steinsalzgeschwindigkeit von 0.120 m/ns migriert wurde. Damit ist in den meisten Fällen die Lage der ersten Reflektoren zuverlässig. Die Lage
Abbildung 3.11: Spurspektrum (⊙) nach MWA, y-gain Funktion (⊙) und nach fK Filter (⊙)

Abbildung 3.12: Vergleich CMP Daten vor (⊙) und nach FK-Filterung (⊙)
Abbildung 3.13: Die Filterung erfolgt im Frequenz Wellenzahl Bereich. Die Energie der Störungen bei 100 MHz und 400 MHz wird herausgefiltert, indem nur der innere markierte Bereich in den Ort Zeit Bereich zurücktransformiert wird.

Abbildung 3.14: 2D Mittelwertabzug mit einer Breite von 10 und 60 Spuren
darunterliegender Reflektoren, wie im vorliegenden Fall die Sohle einer luftgefüllten Kammer, müssen dann manuell korrigiert werden. Abb. 3.17 zeigt die Sektion links mit konstanter Salzgeschwindigkeit, rechts mit Luftgeschwindigkeit migriert. Die Hyperbeln an den Kanten sind verschwunden und die Hyperbeln bei 40 ns sind zu punktförmigen Objekten geworden. Einige Objekte scheinen übermigriert und haben nach oben geöffnete Hyperbeln. Das Bild bei Luftgeschwindigkeit ist stark geglätet und von horizontalen Strukturen geprägt. Im Bereich 110–120 m bei 40 ns bildet sich jetzt ein ebener Reflektor aus. Das heißt, diese Reflexion ist durch Luft gelaufen, kommt also sozusagen von hinten und nicht aus der Richtung, in der die Sektion aufgenommen wurde (dort befindet sich eine räumliche Verbreiterung der Strecke, in der die Messung stattfand).
Abbildung 3.16: Spiking-Dekonvolution (1): 0–100 ns / 30 ns / 0.5% und 0–500 ns / 100 ns / 0.5%

Abbildung 3.17: Migration (6) mit der Geschwindigkeit von Steinsalz und Luft, bzw. Lichtgeschwindigkeit
3.4 Geschwindigkeitsanalyse

Erste Geschwindigkeitsabschätzungen werden an markanten Signalen in den Profildaten durchgeführt, wie z.B. an Reflexionshyperbeln, Geraden, soweit dies erkennbar ist. Genauere Ergebnisse liefern die Geschwindigkeitsbestimmungen mit Hilfe der CMP Messungen. Die ersten markanten Signale in einer CMP Sektion bilden bei Radardaten die beiden direkten Wellen, die schnellere, die sich in Luft fortpflanzt, und die langsamere, die sich mit der Geschwindigkeit des ersten Mediums im Boden ausbreitet. Die übrigen Geschwindigkeiten lassen sich aus den hyperbelförmigen Ästen der Einsätze bestimmen. Geschwindigkeiten in geologischen Medien liegen dabei zwischen 0.05 und 0.15 m/µs. Werden Geschwindigkeiten für ein Medium bestimmt, die deutlich höher liegen, so deutet das darauf hin, daß das Signal zumindest einen Teil seines Lauftweges in Luft zurückgelegt hat. Es handelt sich bei dieser Geschwindigkeit dann um eine Mischgeschwindigkeit. In Luft pflanzt sich das Signal mit 0.3 m/µs zurück, der Lichtgeschwindigkeit. Die Hyperbel einer solchen Geschwindigkeit würde sich dann asymptotisch der Geraden der direkten Luftwelle anschmiegen. Laufen zu späteren Zeiten Ersteinsätze ab einem bestimmten Antennenabstand parallel zur direkten Luftwelle (siehe in Abb. 3.19 bei ca. 150 ns ab 10 m), so deutet dies auf refraktierte Wellen hin. Dieser Wellentyp entsteht immer, wenn eine Welle aus einem langsamen Medium in ein schnelleres Medium eintritt und dabei entlang dieser Schichtgrenze läuft⁷.

Zur Bestimmung der Geschwindigkeiten wurden verschiedene Verfahren durchgeführt:

1. Manuell durch Picken der jeweiligen Ersteinsätze und Auftragen in ein X^2T^2 Diagramm (Abb. 3.18). Ermittlung der RMS-Geschwindigkeiten aus den Steigungen der sich dann ergebenden Geraden. Bestimmung der Intervalgeschwindigkeiten mit dem FORTRAN Programm DIXILAND, welches auf der Formel von Dix basiert, wobei eine ebene, parallele Schichtung des Untergrundes angenommen wird:

$$
 \nu_n = \sqrt{\frac{1}{t_n} \left(\nu_{n,RMS}^2 \sum_{i=1}^{n} t_i - \nu_{n-1,RMS}^2 \sum_{i=1}^{n-1} t_i \right)}
$$

mit

$$
 \nu_{i,RMS} = \text{RMS Geschwindigkeit der i-ten Schicht}
 \nu_i = \text{Intervallgeschw. der i-ten Schicht}
 t_i = \text{Laufzeit in der i-ten Schicht}
 t_n = \text{Gesamtlauftzeit}
 \nu_1 = \nu_{1,RMS}
$$

⁷Normalerweise tritt dieser Fall bei Radarmessungen nicht auf, da üblicherweise die Geschwindigkeit mit der Tiefe abnimmt, da der Feuchtigkeitsgehalt zunimmt, und Wasser eine sehr langsame Geschwindigkeit hat (0.03 m/µs). Im vorliegenden Fall handelt es sich aber um einen Salz/Luft Übergang.
Abbildung 3.18: Anwendung der X^2T^2 Methode zur Bestimmung der Geschwindigkeiten. Über die direkte Bodenwelle ergibt sich für Steinsalz (erste Schicht) eine Geschwindigkeit von 0.1194 m/ns, für die für Radar typische zweite direkte Welle, die sich in der Luft fortppflanzt, erhält man eine Steigung, die der Lichtgeschwindigkeit entspricht.

2. Mit Hilfe des Programms REFLEX durch interaktive Anpassung der Reflexionshyperbeln an die Einsätze im CMP Diagramm (Abb. 3.19). Dabei kann die Schichtanzahl, die Lage der Schicht und die Geschwindigkeit in der Schicht so variiert werden, daß die sich daraus ergebenen Reflexionshyperbeln mit denen der gemessenen Sektion zur Deckung kommen.

3. Mit Hilfe des FORTRAN90 Programmes CMPANO2 durch Berechnung eines Geschwindigkeitsspektrums (Abb. 3.20)

$$S_{i,v_{st}} = \frac{1}{M} \sum_{l_0=t}^{t+\Delta t} \left(\sum_{i=1}^{M} x_{i,t(i)} \right)^2 \frac{1}{\sum_{i=1}^{M} x_{i,t(i)}^2}$$ (3.2)

mit

$S_{i,v_{st}}$ = semblance als Fkt. von t und v_{st}

M = Anzahl der aufgenommenen Spuren

Δt = beobachtetes Zeitfenster

$t(i)$ = Die Lotzeit $t(i)$ liegt auf der Hyperbel der Stapelgeschw. v_{st}

$$t(i) = \sqrt{t^2(0) + \frac{x_{i,t(0)}^2}{v_{st}^2}}$$

$x_{i,t(i)}$ = Die Amplitude des i-ten Spur zur Lotzeit $t(i)$

Die Größe $\textit{semblance}$ repräsentiert das Verhältnis der Gesamtenergie der Spuren zur Summe der Energie auf den Hyperbeln der entsprechenden Stapelgeschwindigkeit innerhalb des Zeitfensters Δt. In den Geschwindigkeitsspektren ordnet man die Stapelgeschwindigkeiten den einzelnen Reflektoren zu. Mit Hilfe der Gleichung (3.1) berechnet man dann die Intervallgeschwindigkeiten der einzelnen Schichten.
Erstellung eines Tiefenmodelles

Ursprünglich war es für die vorliegende Arbeit geplant, die Geschwindigkeitstiefenverteilung interaktiv zu ermitteln. Äußer im Fall einfacher und eindeutiger Reflexionen läßt sich besonders die Geschwindigkeit einer Schicht nicht eindeutig bestimmen. Man verläßt schnell geologische Geschwindigkeitsbereiche bei der Anpassung. Dies gilt besonders für die Reflexionen, die nach einem Salz/Luft Übergang kommen. Diese lassen sich nicht mehr sinnvoll anpassen.

Um die Variable Offset Sektionen neutraler auf ihren Informationsgehalt zu prüfen, wurde versucht, eine Semblance Analyse der Daten mit Hilfe des von dem Center of Wave Phenomena frei erhältlichen seismischen Prozessing Paketes SU8 unter UNIX durchzuführen. Dies gelang jedoch nicht, da dort die Analyse auf seismischen Daten im Millisekundenbereich basierte und sich die Radardaten nicht unskalieren ließen. Deshalb wurde das Programm CMPANO2 erstellt, mit dem die Radardaten einer Semblance Analyse unterzogen werden können.9

3.5 Erstellung eines Tiefenmodelles

1. Migration der Profildaten mit konstanter Geschwindigkeit der ersten Schicht
2. Migration der Profildaten mit aus den CMP Messungen erhaltenen 1D Tiefenmodellen zur ersten Sichtung mit kleinen Spurradien, um Rechenzeit zu sparen

8 www.cwp.mines.edu
9 vorher müssen die Daten als daten.asc aus REFLEX exportiert werden. Da die Daten schnell mehrere MB Größe annehmen, werden sie mit Hilfe des Programms ASC2AMP auf die notwendigen Amplitudendaten reduziert.
3. Optionale Erstellung einer 2D Geschwindigkeitstiefenverteilung, wenn mehrere CMP Messungen vorhanden sind

4. Migration mit 1D/2D Geschwindigkeitstiefenverteilung mit großen Spurradien

Bei der Arbeit mit den Daten hat es sich im allgemeinen als praktisch erwiesen, die Sektionen mit der konstanten Geschwindigkeit von Salz zu migrieren. Dadurch sind die ersten Reflektoren in der Tiefe meist richtig erfaßt. Im zweiten Schritt wird die Lage nichtidentifizierter Reflektoren mit Luftgeschwindigkeit berechnet und kontrolliert, ob diese Lage nicht mit einer rückwärtigen Streckenrückwand oder ähnlichem korrespondiert. Durch die zergliederte Untergrundstruktur wurde auf die Erstellung einer 2D Geschwindigkeitstiefenverteilung und Tiefenmodells aus der direkten Sektion verzichtet. Es ist praktikabler, folgenderweise vorzugehen:

3.6 Erstellung eines Untergrundmodells

1. Picken der einzelnen vermuteten Reflexionshorizonte in der Zero Offset Sektion. Dabei werden die Picks zusammengefaßt, die sich zu einem Reflektor zuordnen lassen.

3. Übernahme der Untergrundgeometrie in ein 2D-Schichtmodell, wobei die Picks mit der zugeordneten mittleren Geschwindigkeit tiefengewandelt werden

4. Zuordnung der elektrischen Eigenschaften zu den einzelnen Schichten

5. Erstellung eines Vorwärtsmodells mit Hilfe der FD Methode

3.7 Vorwärtsmodellierung

Aus den gemessenen Daten wird im ersten Schritt ein 2D-Schichtmodell (X, Z) des Untergrundes entwickelt. Basierend auf diesem Schichtenmodell wird mittels eines Finiten Differenzen (FD) Verfahrens die elektromagnetische Wellenausbreitung simuliert und in ein Wellenfeld (X, Z, T) in Abhängigkeit von den Ortskoordinaten und der Zeit gespeichert. Die elektromagnetische Simulation basiert auf der Lösung der Maxwell Gleichungen, wobei die physikalischen Parameter \(\varepsilon_r, \mu_r \) und \(\sigma \) frequenzunabhängig angenommen werden. Aus diesem resultierenden Wellenfeld wird anschließend die simulierte Zero Offset Sektion (X, T) extrahiert.

Man kann zwischen drei unterschiedlichen Anrengungsquellen auswählen.

\(^{10}\)Bei der FD Methode werden die in der Differentialgleichung auftretenden Differentialquotienten durch Differenzenquotienten ersetzt
Abbildung 3.21: Modell eines rechteckigen Hohlraumes in Salz

1. **Ebene Welle** Die ebene Welle erlaubt die Simulation einer Zero Offset Sektion, wenn sie an der Oberfläche \((Z=0)\) angeregt wird. Allerdings ist zu beachten, daß nur im Fall ebener Reflektoren die Reflexionseigenschaften denen einer Profilmessung entsprechen.

3. **Punktquelle** Mit diesem Modell kann durch mehrere Einzelexperimente eine CMP Messung kinematisch und dynamisch korrekt simuliert werden.

Im Folgenden ist ein 100 m langes und 30 m tiefes Untergrundmodell erstellt worden, in dem sich in ca. 9 m Tiefe ein quaderförmiger Körper befindet mit einer Höhe von 13 m und einer Längserstreckung von 50 m. Dem Körper wurden die elektrischen Eigenschaften von Luft und dem umgebenden Untergrund die von Steinsalz zugeordnet. In Abb. 3.21 ist das Modell einer luftgefüllten Kammer zu sehen. Abb. 3.22 zeigt das synthetische Radargramm, welches man bei einer Plane Wave Anregung erhält. Die Tiefenskala basiert auf der Geschwindigkeit von Salz.

Die Lage und Tiefe der Kammerfirste ist im Radargramm gut erfaßt, wobei an den Kanten Diffractionshyperbeln entstehen. Die Sohle der Kammer ist in der Sektion viel zu früh wiedergegeben, was daran liegt, daß sich das Signal in der Kammer mit Lichtgeschwindigkeit fortpflanzt, somit dreimal so schnell wie in Salz. Deutlich ist die Bildung von Multipli zu sehen, die durch Mehrfachreflexionen in der Kammer hervorgerufen werden. Interessant sind die
Abbildung 3.22: Synthetische Zero Offset Sektion über einem rechteckigen Hohlraumes in Salz für 200 MHz. Die Tiefenskala bezieht sich auf Salzgeschwindigkeit mit $v=0.12 \text{ m/ns}$

Geisterreflexionen bei 500 ns, die neben der Kammer entstehen. Das dieser Effekt durch die Begrenzung des synthetischen Modelles verursacht werden, ist unwahrscheinlich, da die Ränder des Modelles in der Amplitude bedämpft sind.
Kapitel 4

Praxisteil I: Erkundung der Lokation auf der 490 m Sohle

Die ersten Radarmessungen, die in dieser Diplomarbeit behandelt werden, wurden am 14.2.97 auf der 490 m Sohle in den Südstoß gemacht. Die Messungen wurden mit freundlicherweise von Herrn Kurz zur Verfügung gestellt und fanden im Rahmen seiner Diplomarbeit [Kurz(1997)] statt. Sie beschränkten sich auf Sektionsmessungen in den Südstoß hinein. Den Hauptteil der Messungen lieferten die folgenden drei Meßkampagnen zur Asse:

A1 7.7.–10.7.97
A2 29.9.–2.10.97
A3 8.12.–11.12.97

Bei einigen Daten ist der zeitliche Abstand der Messungen zu beachten. Dabei haben sich die Einsatzzeiten der Reflektoren verschoben. Mit Salzgeschwindigkeit berechnet, ergeben sich daraus Verschiebungen von bis zu 1.8 m auf einer Tiefe von 20 m. Gerade im Bereich des Südstoßes sind die Konvergenzerscheinungen des Salzes durch die Auflast des Gebirges deutlich spürbar, aber sie liegen im Jahresmittel bei 0.1 m und können diesen Effekt nicht erklären. Ursache könnte eher eine leichte Änderung in der Zeitbasis des Meßgerätes liegen, da eine Eichung nicht vor jeder Messung vorgenommen wurde.

Abbildung 4.1: 3D Ansicht des Meßgebietes auf der 490 m Sohle mit Blickrichtung nach Norden

40
Kapitel 4. Praxisteil I: Erkundung der Lokation auf der 490 m Sohle

Abbildung 4.2: Lage der Kammern der 490 m Sohle und der darunter gelegenen Sohlen auf 511 m und 532 m von oben gesehen

Abbildung 4.3: Lage der Kammern, seitlich gesehen mit Blickrichtung nach Westen
Abbildung 4.4: Lage der Messungen auf der 490 m Sohle

4.1 Vergleich der Antennenfrequenzen an der Südstoßmessung

Abb. 4.5 zeigt die gemessenen Zero Offset Sektionen für die Antennenfrequenzen 50, 100, 200 und 400 MHz. Wegen der geringen Leitfähigkeit des Salzes erreichen die Eindringtiefen weitaus höhere Werte als man sonst vom Geo-radarverfahren gewohnt ist. Als Richtwerte für Salz können folgende Werte angenommen werden, wobei sich die Tiefe verringert, wenn die eingestrahlte Energie an starken Reflektoren oder Objekten gestreut wird:

<table>
<thead>
<tr>
<th>Frequenz (MHz)</th>
<th>Lotzeit (ns)</th>
<th>Eindringtiefe (m)</th>
<th>Skintiefe (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>bei $v_{S,Sal} = 0.12$ m/ns</td>
<td>bei $\sigma_{S,Sal} = 0.6$ mS/m</td>
</tr>
<tr>
<td>50</td>
<td>2000</td>
<td>80–100</td>
<td>2.9</td>
</tr>
<tr>
<td>100</td>
<td>1000</td>
<td>30–50</td>
<td>2.0</td>
</tr>
<tr>
<td>200</td>
<td>500</td>
<td>25</td>
<td>1.4</td>
</tr>
<tr>
<td>400</td>
<td>250</td>
<td>10–15</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Die Skintiefe gibt dabei die Tiefe an, bei der das Signal auf den Wert 1/e abgenommen hat: $z_{Skin} \approx 500 \sqrt{\frac{f}{\sigma}}$

Vergleicht man die Auflösung der 4 Antennen, sieht man in Abb. 4.6, daß der Reflektor bei 110 ns von allen Antennen erfaßt wird. Die Reflektorengruppe
Abbildung 4.5: Vergleich Antennenauflosung
bei 220, 260 und 330 ns wird erst ab einer Frequenz von 100 MHz sichtbar. Der Reflektor bei 50 ns ist bei 50 MHz noch durch die direkten Wellen überdeckt und nimmt mit zunehmender Frequenz an Detailreichum zu. Die 400 MHz Messung hat im Vergleich zu der 200 MHz Messung mehr Schärfe, ist dafür aber auch stark anfällig gegen Störungen und Störobjekte in geringer Tiefe. Ab 250 ns nimmt ein Grundrauschen im Signal deutlich zu, sodaß die Eindringtiefe der Antenne erreicht ist. Das Signal, welches bei der 50 MHz Antenne sich bei 1600 ns über das ganze Profil erstreckt, scheint eine gerätebedingte Störung zu sein, da es auch bei anderen Radarmessungen nur bei den 50 MHz Antennen aufgetreten ist.

Der überwiegende Teil der nachfolgenden Messungen wurde mit den 200 MHz Antennen durchgeführt, die ein Optimum an Auflösung, Signalstärke und damit Eindringtiefe bieten. Für Messungen an Objekten in einer Tiefe bis 12 m wurden die 400 MHz Antennen verwendet, die in diesem Bereich durch ihre höhere Auflösung mehr Information liefern.

In Abb. 4.7 läßt sich die im Frequenzbereich abgestrahlte Bandbreite der Antennen vergleichen. Die 50 MHz Antenne emittiert im Bereich 25–75 MHz, die 100 MHz von 75–110 MHz, die 200 MHz von 100–200 MHz und die 400 MHz von 200–300 MHz. Damit liefert die 100 MHz Antenne das schmalbandigstes Signal. Die bei 120 m sichtbare Störung wird durch ein lokales Eisenobjekt hervorgerufen. Es handelt sich dabei um massive Eisenträger, die als Abspernung eines Rollochs dienen. Die lokations- und zeitunabhängigen Störungen,
Abbildung 4.7: Vergleich Spurpektrum 50 – 400 MHz

die sich als Linien bemerkbar machen, liegen auf konstanten, schmalbandigen Frequenzen. Diese Störungen sind auch im Grubenfunk als Rauschen hörbar, sobald die Sendean tentative angeschaltet wird. Dieser Effekt trat aber nicht immer auf und auch nicht mit aktivem Funkverkehr, sodaß eher eine Rückkopplung mit Maschinen, die nicht ständig in Betrieb sind, vermutet wird. Merkwürdig sind die schräg verlaufenden Störungen, welche von einer Quelle stammen, deren Störfrequenz sich konstant mit der Zeit ändert. Als nachteilig erwies sich besonders der Frequenzanteil bei 110 MHz, der im Bereich des Nutzsignals liegt, der sich nur mit Hilfe einer FK Filterung einigermaßen dämpfen läßt.

4.2 Zero Offset Sektionen auf der 490 m Strecke

Die Abb. 4.8 bis 4.11 zeigen die mit Salzgeschwindigkeit migrierten 200 MHz Zero Offset Sektionen auf der 490 m Strecke. Die Tiefenskala und die nachfolgenden Tiefeangaben beziehen sich auf Salzgeschwindigkeit und geben Tiefen nur dann korrekt wieder, wenn kein anderes Medium vom Radarsignal durchlaufen wurde.

Bei der Profilmessung auf Abb. 4.8 in den Südost hinein sieht man einen stark gefalteten Hauptreflektor, der sich über das ganze Profil hinweg erstreckt und dessen Tiefe zwischen 7–10 m variiert. Ihm ist ein etwas schwächerer Reflektor
vorgelagert, der sich von 0–75 m erstreckt. Von 75–100 m scheint er sich mit deutlich schächerer Amplitude fortzusetzen, um dann in den Hauptreflektor überzugehen. Ein dritter Reflektor ist nur schwach bei 8 m zu sehen, der zwischen 45–65 m und 115–135 m abreift. In einem relativen Abstand von 5 und 7 m treten ein vierter und füfter Reflektor auf, die der geometrischen Form des dritten Reflektors folgen. Dort, wo diese drei Reflektoren abreifen, ist in 20 m Tiefe jeweils ein weiterer Reflektor zu sehen, der besonders bei 45–65 m ausgeprägt ist. Die Störung bei 120 m wird durch ein oberflächenhaftes Eisenobjekt hervorgerufen und schirmt jede Information in diesem Bereich ab. Weiterhin sind einige punktförmige Objekte bis in einen Tiefenbereich von 4 m zu sehen. Zwei weitere Reflektoren lassen sich nur noch schwach ausmachen. Der erste verläuft ab 80 m in einer Tiefe von 1,5 m und erreicht zwischen 120–170 m eine Tiefe von 5 m. Der zweite schwache Reflektor läßt sich besonders zwischen 50–70 m in einer Tiefe von 11 m ausmachen. Aus der Bohrung 61/490 (Abb. 3.2 auf Seite 21) bei 15 m sind folgende Schichten bekannt:

Abbildung 4.8: 200Mhz 490m Südstoßprofil, migriert mit Salzgeschwindigkeit
Abbildung 4.9: 200 MHz 490 m Profil im Winkel von ca. 45 Grad zwischen Stoß und Firste (Hangende), migriert mit Salzgeschwindigkeit

<table>
<thead>
<tr>
<th>Teufe (m)</th>
<th>Schicht</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1.4</td>
<td>Na3b+g/Na</td>
</tr>
<tr>
<td>1.4-4.5</td>
<td>Na3(4)</td>
</tr>
<tr>
<td>4.5-8.6</td>
<td>sol Na</td>
</tr>
<tr>
<td>8.6-12.0</td>
<td>sol A</td>
</tr>
<tr>
<td>12.0-12.6</td>
<td>M</td>
</tr>
<tr>
<td>12.6-15.9</td>
<td>sol A</td>
</tr>
<tr>
<td>15.0-16.6</td>
<td>M</td>
</tr>
<tr>
<td>16.6-24.9</td>
<td>sol A</td>
</tr>
</tbody>
</table>

Damit läßt sich der Hauptreflektor als solNa/solA Steinsalz/Anhydrit Übergang identifizieren. Der vorgelagerte Reflektor koreliert mit einem Na3(4)/solNa Übergang. Überraschend ist, daß dieser Übergang sich im Radargramm als starker Reflektor bemerkbar macht, da sich die Salze der Leine und des oberen Bundsandsteins keinen so großen Kontrast in ihren elektrischen Eigenschaften aufweisen. Bei dem schwachen Reflektor in 11 m Tiefe kann es sich um den Mergel handeln.

Abb. 4.9 zeigt das gleiche Profil, nur daß die Antennen im 45 Grad Winkel
Zero Offset Sektionen auf der 490 m Strecke

Zer o O/set Sektionen auf der 490 m Strecke

Abbildung 4.10: 200 MHz 490 m Sohlenprofil, migriert mit Salzgeschwindigkeit

relativ zum Südstoß in das Hangende gerichtet sind. Während der Messung konnte der Abstand der Antennen zum Hangenden nicht immer konstant gehalten werden, was zu einer etwas schlechteren Ankopplung des Signals führte. Die beiden schwachen Reflektoren sind bei dieser Messung nicht zu erkennen. Der Hauptreflektor ist, wie auch der zweite vorgelagerte Reflektor, gut zu sehen. Neu ist, daß der dritte Reflektor auf 8,5 m und deutlich stärker erfaßt wird, besonders im hinteren Bereich ab 145 m. Gleiches gilt für die auch hier 5 und 7 m tiefer erscheinenden Reflektoren. Deren Interpretation erwies sich als geologisch schwierig, besonders die Zonen, wo die Reflektoren unterbrochen sind.

Die eindeutige Auflösung dieses Rätsels brachte die Profilmessung in die Sohle hinein (Abb. 4.10). Hier konnte eine sehr gute Ankopplung der Antennen erzielt werden, die durch den glatten und verdichteten Sohlenboden bedingt war. Der Anhydrit Hauptreflektor und der vorgelagerte Reflektor aus den vorherigen Messungen ist jetzt zu erkennen. Dominierend ist der Reflektor in 7 m Tiefe, der in den Bereichen 45–65 m und 120–132 m auf 19 und 18 m versetzt ist und damit genau den Firsten der Kammern 4, 5 und 6 der 511 m Sohle entspricht. Die um 5 m tiefer versetzte erscheinende Reflektoren entsprechen der Sohle der Kammern. Nur erscheinen sie in der Radarsektion nicht an ihrer geometrisch korrekten Position, sondern zu einem viel früheren Zeitpunkt, da der Radarpuls in Luft eine um 200 % höhere Geschwindigkeit hat. Die Sohlenreflexion kommt 80 ns (Lotzeit) nach der Firstreflektion. Das
Abbildung 4.11: 200 MHz 490 m Profil in die Finste hinein, migriert mit Salzgeschwindigkeit entspricht bei Luftgeschwindigkeit einer Höhe der Kammer von 12 m.

Abb. 4.14 und Abb. 4.16 zeigen die Messungen in die Sohle und Firste, Abb. 4.20 und Abb. 3.19 auf Seite 36 die Messungen in den Südstoß. Dabei sind die aus dem Programm CMPANO2 erhaltenen Semblance Analysen parallel zu den gemessenen Sektionen dargestellt. Die Auswertung der Geschwindigkeiten ist für die Sohlen- und Firstmessungen in Tab. 4.1 und für den Südstoß in Tab. 4.2 zusammengefaßt.

Abb. 4.12 zeigt die Geschwindigkeitstiefenverteilung, wenn man die ausgewählten Lotzeit / Stapelgeschwindigkeitspaare einer Messung mit der Dix Formel mit Hilfe des FORTRAN90 Programmes DIXILAND berechnet.

Zurück zu Abb. 4.12. Die Sohlenmessungen am Punkt E, I und K entsprechen den Profildaten aus dem vorangegangenen Kapitel. Wie dort, liegt die Firste der 511 m Kammer bei K tiefer als bei E und I. Die Messung Q, die aus Kammer 8 stammt, liegt mit Tiefen- und Geschwindigkeitsangaben völlig daneben. Die Ursache wird daran liegen, daß dort viele kleine Hohlräume in der Schwebe zwischen 490 m und 511 m Sohle existieren, die sich durch den Gebirgsdruck gebildet haben und die keine eindeutige Zuordnung der Reflektoren ermöglichen. Die Firstmessung liegt mit ca. 6 m neben der wahren Tiefe des Reflektors, was aber an der nicht berücksichtigten 3 m mächtigen Luftschicht der 490 m Strecke liegt.

Rechts in Abb. 4.12 sind die Messungen in den Südstoß aufgetragen. Interessant der Schichtübergang in 4.5 m Tiefe, der bis auf J von allen Messungen gesehen wird. Die Bohrung 61/490 gibt dort einen Übergang von Leine Steinsalz
Tabelle 4.1: Lotzeiten und Stapelgeschwindigkeiten der CMP Messungen in die Sohle und die Firste (M). Die mit * markierten Werte wurden mit der Formel von Dix in wahre Tiefen umgerechnet.

<table>
<thead>
<tr>
<th>2waytime/(v_{starking})</th>
<th>490e1cs2</th>
<th>490i1cs2</th>
<th>490k1cs2</th>
<th>490q1cs2</th>
<th>490m1cs2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(ns) / (m/ns)</td>
<td>40 / 0.28</td>
<td>20+40+60 / 0.29</td>
<td>80 / 0.32</td>
<td>40+60 / 0.295</td>
<td></td>
</tr>
<tr>
<td>120 / 0.120*</td>
<td>140 / 0.120*</td>
<td>160 / 0.135*</td>
<td>160 / 0.18*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>160 / 0.115</td>
<td>180 / 0.122</td>
<td>220 / 0.23*--0.26</td>
<td>190 / 0.255*</td>
<td>240 / 0.235*--0.25</td>
<td></td>
</tr>
<tr>
<td>210 / 0.225*</td>
<td>210 / 0.21*</td>
<td>235 / 0.140+0.155</td>
<td>390 / 0.225</td>
<td></td>
<td></td>
</tr>
<tr>
<td>250 / 0.21</td>
<td></td>
<td>255 / 0.122</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbildung 4.12: Wahre Tiefen, die man nach der Berechnung nach der Dix Formel erhält: links für die CMP Messungen, die in die Sohle und Fürste hineingemessen wurden; rechts für die CMP Messungen, die in den Südstoß gemessen wurden.
Variable Offset Sektionen auf der 490 m Strecke

Abbildung 4.13: Semblance Analyse der CMP Sektionen

Abbildung 4.14: gemessene CMP Sektion an Lokation E und I in die Sohle hinein
Abbildung 4.15: Semblance Analyse der CMP Sektionen

Abbildung 4.16: gemessene CMP Sektion an Lokation k und M in die Sohle und in die Firste hinein
Abbildung 4.17: Semblance Analyse der CMP Sektionen

Abbildung 4.18: gemessene CMP Sektion an Lokation q in Kammer 8 in die Sohle hinein
Variable Offset Sektionen auf der 490 m Strecke

Abbildung 4.19: Semblance Analyse der CMP Sektionen

Abbildung 4.20: gemessene CMP Sektion an Lokation f und g in den Südstoß hinein
Erstellung eines Untergrundmodells

Im Vergleich zum Exploding Reflektor Modell entspricht die Plane Wave Anregung besser den gemessenen Daten. Die Kammersohle wird auch in der synthetischen Sektion bedingt durch die luftgefüllte Kammer zu früh abgebildet. Aus diesem Grund wurde im Folgenden mit der Plane Wave Anregung gearbeitet. Abb. 4.23 zeigt den gepickten Salz/Luftübergang und das auf dem Modell aus Abb. 4.21 basierende synthetische Radargramm, diesmal mit einem feineren FD Raster berechnet. Die ebene Wellenanregung fand bei z=0 statt.

Die synthetische Sektion stimmt gut mit der gemessene Sektion überein. Firstreflexionen der Kammern und Verbindungsstrecken und die Sohlenreflexionen erscheinen zu gleichen Zeiten. Zwei Dinge fallen jedoch auf: Die vermutete Multiple Reflexion tritt in der gemessene Sektion bei 260 ns auf, im synthetischen Fall bei 300 ns im gleichmäßigen Abstand zur vorhergebenen-
Erstellung eines Untergrundmodells

Abbildung 4.22: Die grob gerasterten synthetischen Radargramme (r.o. Plane Wave Anregung, r.u. Exploding Reflektor) im Vergleich zu der gemessenen Zero Offset Sektion der 490 m Sohle, Lo. FK-gefiltert und Lu. migriert

Die grob gerasterten synthetischen Radargramme im Vergleich zu der gemessenen Zero Offset Sektion der 490 m Sohle, Lo. FK-gefiltert und Lu. migriert.

den Reflexion, wie man es für eine Multiple erwartet. Vermutlich tritt die Mehrfachreflexion in Realität nicht exakt zwischen Firste und Sohle auf (wie im Modell), sondern wird auch von den Seitenwänden reflektiert. Außerdem sind die Abrüfhyperbeln bei der Messung etwas steiler als im synthetischen Fall, was darauf hindeutet, daß die realen elektrischen Eigenschaften von den angenommenen etwas abweichen.

Die Zero Offset Sektion in den Südstoß wurde entsprechend bearbeitet, wobei sich hier die Modellierung auf die beiden Reflektoren konzentriert, die sich von der Geologie und der Bohrung 61/490 her tatsächlich in Richtung des Südstoßes befinden.

Abweichend von den Bohrergebnissen wurde hypothetisch von einem etwas anderen Modell ausgegangen. Da ein Salz/Salz Übergang nicht so starke Reflexionen wie die erhaltenen hervorruft, wurde ein Salz/Anhydrit Übergang für den vorgelagerten Reflektor angenommen. Dort, wo die starken Reflektoren auftreten, wurden dünne Tonlagen modelliert, die aufgrund ihres hohen elektrischen Kontrastes trotz ihrer geringen Mächtigkeit starke Reflexionen hervorrufen. Abb. 4.24 zeigt die gepickten Reflektoren und das mit 200 MHz berechnete synthetische Radargramm. Die im Modell direkt hinter dem Anhydrit liegende Tonschicht ist unwahrscheinlich, da diese die Hauptr Reflexion
Erstellung eines Untergrundmodells

Abbildung 4.23: gepicktes Modell der Sohle und synthetisches Radargramm für 200 MHz

Abschirmen würde, wie es zwischen 20 und 60 m bei 120 ns zu sehen ist. Die Reflexionen werden besonders ab 90 m ähnlich denen aus der Messung wiedergegeben, mit dem Unterschied, daß Abrisshyperbeln an den Stellen entstehen, wo die Tineinlagen aufhören.

Da sich die Reflexionen aus dem Südstoß mit denen aus der Sohle überlagern, wurden die aus den vorhergehenden Modellierungen erhaltenen Radargramme additiv überlagert und sind in Abb. 4.25 der gemessenen Südstoß Sektion gegenübergestellt. Bis auf den schon erwähnten zu stark gewählten vorgelagerten Tonreflektor gibt die synthetische Sektion die gemessene Sektion im Charakter gut wieder. Der Anteil der aus der Sohle stammenden Reflexionen müßte abgeschwächt werden. Im vorliegenden Fall wurden die Reflexionen zu gleichen Teilen überlagert.

Im Folgenden wurden jeder erkennbare Reflektor gepickt und mit der mittleren Geschwindigkeit (Stapelgeschwindigkeit) des darüber liegenden Schichtpakettes tiefengewandelt. Die Profile in Sohlen- und Finstrichtung zeigen die Geometrie der Kammern auf 511 m, wobei die Firstmessung die Kammern natürlich tiefer sieht. Auch bei der Messung in den Südstoß und in das Hangende hinein sind die Kammern deutlich zu sehen, werden aber nicht in ihrer Tiefenlage richtig erfaßt. Das liegt wahrscheinlich an der nichttrivialen Zusammensetzung der Stapelgeschwindigkeit, da nicht jeder Reflektor vom Signal durchlaufen wird.
Erstellung eines Untergrundmodells

Abbildung 4.24: gepicktes Modell des Südstoßes und synthetisches Radargramm für 200 MHz

Abbildung 4.25: Vergleich des gemessenen Radargramms des Südstoßes mit den überlagerten synthetischen Radargrammen aus 4.24 und 4.23
Abbildung 4.26: oben: Tiefenmodell Hangende, unten: Tiefenmodell Südstoß
Abbildung 4.27: oben: Tiefenmodell Finste unten: Tiefenmodell Sohle
Kapitel 5

Praxisteil II: Zusatzmessungen

5.1 Antennencharakteristik im Steinsalz

Die vorliegende Arbeit zielt nicht in erster Linie auf die vollständige Untersuchung der Antennencharakteristik im Salz ab, aber hat zum Ziel, die Effekte, die durch die Abstrahlcharakteristik bedingt sind von denen, die durch den Brewsterwinkel hervorgerufen werden, zu trennen. Unglücklicherweise finden ausgerechnet bei paralleler Antennenanordnung Amplitudenabnahmen in der Antennencharakteristik in dem Winkelbereich statt, wo der Amplitudeneinbruch bedingt durch den Brewsterwinkel beobachtet werden soll.

Dazu wurden an einem homogenen Salzpfleiler auf der 800 m Sohle mehrere Durchstrahlungen vorgenommen, wobei sich die Untersuchungen auf die 200 MHz Antennen konzentrierten. Abb. 5.1 gibt eine Übersicht der durchgeführten Messungen.

Im ersten Schritt wurden mit 400 MHz und 200 MHz Profilmessungen um den gesamten Pfleiler herum aufgenommen. Abb. 5.2 zeigt die ummigrierte 200 MHz Zero-Offset Sektion. Die Tiefenkala bezieht sich auf Salzgeschwindigkeit. Startet man bei Profilometer 0 m, sieht man wie man sich die ersten 20 m auf die spitze Kante zubewegt, somit der Reflektor immer näher scheint. Von 20 m bis 40 m ist es genau umgekehrt, man bewegt sich von der Kante weg, bis man genau am Anfang der parallelen Rückseite ist, die sich bis Profilometer 75 m erstreckt. Es kommt die rundere östlich gelegene Kante und ab 95 m befindet man sich wieder auf der Vorderseite des Pfeilers und läuft wieder auf Profilometer 0 m zu. Bei einer Salzgeschwindigkeit von 0.12 m/ns kommt man auf eine Breite des Pfeilers von 13 m.

Bei ca. 30 ns sieht man die Reflexion der Streckerrückwand, die sich über das ganze Profil hinzieht, nur dort, wo sich der Gang räumlich aufteilt zu späteren Zeiten verschoben. Viel deutlicher tritt der Luft / Salz Übergang
Abbildung 5.1: Übersicht der an einem homogenen Salzpfeiler auf der 800 m Sohle durchgeführten Messungen

der in Blickrichtung gelegenen Streckenrückwand bei 240 ns auf, der um 30 ns später als die Pfeilerrückwand kommt. 30 ns * 0.3 ns/m Luftgeschwindigkeit ergeben gerade die doppelte Breite der Strecke von 4.5 m. Das Pfeilerinnere erweist sich als homogen.

Von den Durchstrahlungsmessungen wurde zum Schluß die Messung (D) ausgewählt, um die Charakteristik zu bestimmen. Die Messungen (B) und (C) widersprechen nicht den Ergebnissen von (D) und erfassen einen größeren Winkelbereich, haben aber einen entscheidenden Nachteil: Während der Messungen wird die Empfängерantenne in Relation zum Sender verdreht, was rechnerisch korrigiert werden müßte. Da sich aber im nachhinein zeigte, daß besonders der Bereich 30 bis 150 Grad interessant ist, reicht der erfaßte Winkelbereich von Messung (D) aus. Die Antennen bleiben im betrachteten Bereich immer parallel und man erhält die winkelabhängige Abstrahlcharakteristik durch das seitliche Verschieben der Empfängerantenne.

Die Abb. 5.3 zeigt das Resultat von der Durchstrahlung (D). Die ersten 20 Profilmeter entsprechen einer Variable-Offset Sektion, bei der nur der Empfänger bewegt wird. Der für die Charakteristik betrachtete Bereich erstreckt sich von 40 m bis 80 m, wobei sich Empfänger und Sender bei ca. 60 m gegenüberstehen. Dieser Punkt wurde auch als Referenzpunkt für die Winkelberechnung benutzt und entspricht in den nachfolgenden Polardiagrammen 90 Grad.

Bild 5.4 zeigt den betrachteten Ausschnitt, wobei hier der standardmäßig verwendete lineare Gainanteil der Verstärkungsfunktion so weit reduziert wurde, daß die maximal vorkommenden Amplituden in den Daten nicht durch das
Abbildung 5.2: 200Mhz 800m Rundum Profilmessung zeigt die homogene Struktur des Steinsalz Pfeilers

Abbildung 5.3: 200Mhz 800m Durchstrahlung (D)
A ntennencharakteristik im Steinsalz

Abbildung 5.4: 200Mhz 800m Durchstrahlung, Detail, weniger Verstärkung im linearen Anteil der y-gain Funktion.

16 Bit Format abgeschnitten werden. Die Amplituden einer konstanten Phase wurden von Hand abgegriffen und die Entfernung zum Referenzpunkt in Winkel umgerechnet. Die gepickten Amplituden müssen noch halbiert werden, da in ihnen die Charakteristik von Empfänger und Sender steckt. Abb. 5.5 und 5.6 zeigen die erhaltenen Daten für senkrechte (grau dargestellt) und parallele Orientierung der Antennen, einmal als halbierte gepickte Absolutwerte und einmal in logarithmischer Darstellung.

Bei paralleler Orientierung strahlt die Antenne weniger Energie ab, was schon in Abb. 5.4 zu erkennen ist. Deutlich ist der Dipolcharakter der Antenne zu sehen, das herzförmige Abstrahlmuster im senkrechten Fall und der Hauptloben mit den beiden Nebenloben im parallelen Fall. Einbrüche in der Amplitude befinden sich bei 72 und 120 Grad (22 und 30 Grad, wenn man von 0 Grad bei der Gegenüberstellung der Antennen ausgeht). In beiden Fällen ist das Abstrahlmuster nicht symmetrisch, sondern tendiert mit ungefähr 5 Grad nach links. Hierbei ist es schwierig zu unterscheiden, ob dies eine Asymmetrie der Antennen selbst ist oder, was wahrscheinlicher ist, darauf zurückzuführen ist, daß die Antennen nicht planparallel auf dem Pfeilerstöß aufliegen. Der Pfeilerstöß wurde für die Messung nicht extra geglättet, sondern weist die typische Riffelung im Dezimeterbereich auf, die durch das Fräsen der Streben entstehen. Bei symmetrischem Fall ergibt sich der Einbruch bei den parallelen Antennen bei $(22 + 30)/2 = 26$ Grad. Dieses Ergebnis deckt sich gut mit den theoretisch berechneten Werten, wo man für Steinsalz 25 Grad erhält.\footnote{wobei sich die theoretischen Werte auf einen einfachen Dipol beziehen} Der Pfeilerstöß wurde für eine Mächtigkeit des Pfeilers von 14 m kalkuliert. Diese Mächtigkeit wurde vor Ort gemessen und auch [Fechner(1996)] bestätigt.
Abbildung 5.5: Abstrahlcharakteristik der 200 MHz Antenne in Steinsalz bei einer Mächtigkeit des Pfeilers von 14 m

Abbildung 5.6: Abstrahlcharakteristik der 200 MHz Antenne in Steinsalz, wobei die Amplituden in dB angegeben sind
diese Mächtigkeit. Geht man aber von den Einsatzzeiten im Radargramm aus, erhält man mit Salzgeschwindigkeit $13\,\text{m}$ für die Mächtigkeit. Rechnet man mit diesem Wert, erhält man für den symmetrischen Fall einen Winkel von
\[
\frac{(25 + 33)}{2} = 29\,\text{Grad}.
\]
Einfluß des Antennenabstandes bei Zero Offset Sektionen

Abbildung 5.7: Antennenoffset 0.5, 1 und 2 Metern

5.2 Einfluß des Antennenabstandes bei Zero Offset Sektionen

Auf der 490 m Strecke wurde die Zero Offset Sektion, die in die Sohle hinein gemessen wurde, zwischen 100 und 150 m durch Messungen ergänzt, wobei der Abstand der Antennen zueinander variierte. Abb. 5.7 zeigt die sich ergebenden Sektionen mit 0.5, 1, und 2 m Antennenabstand, wobei gleiches Prozessing auf die Datensätze angewendet wurde. Zu beachten ist, daß Messung 490b1ps2 am 7.7.97, die beiden anderen am 2.10.97 durchgeführt wurden. Im Bereich 0–20 ns nehmen die durch das Ringing verursachten Störungen bei zunehmendem Offset deutlich ab. Bei 1 m Offset ist im Vergleich zu den anderen Offsets weniger Ringing im Bereich 20–120 ns zu sehen. Bei 2 m Offset werden die rückwärtsigen Reflexionen der Streckenfänge nicht mehr durch die direkten Wellen verdeckt. Oberflächennahe Objekte bis 50 ns werden durch 0.5 und 1 m Offsets gut erfaßt, erscheinen aber bei einem Antennenabstand von 2 m nur noch verschwommen. Ab 100 ns hat sich am eigentlichen Reflektionscharakter nichts wesentliches verändert, weder an der Geometrie der Reflektoren, noch an der Form der Diffractionshyperbeln. Zusammenfassend läßt sich sagen, daß die Messungen mit 2 m Offset ein etwas klareres Bild des Untergrundes ab 100 ns liefern, wobei bei der praktischen Durchführung Abstriche in der Handhabbarkeit gemacht werden muß.
5.3 Einfluß der Antennenorientierung bei Zero Offset Sektionen

In diesem Abschnitt soll der Einfluß der Antennenorientierung bei Zero Offset Sektionen untersucht werden. Dazu wurden über den gleichen Profilabschnitt 100-150 m wie im vorangegangenen Kapitel mehrere Sektionen in die 490 m Sohle gemessen, wobei die in Abb. 5.8 gezeigten Antennenanordnungen benutzt wurden. Abb. 5.9 stellt die erhaltenen Radargramme dar, die nicht FK gefiltert wurden. Zu beachten ist, daß Messung 490b1pz2 am 10.12.97, die übrigen am 7.7.97 stattgefunden haben.

Als erstes ist auffällig, daß die Abrißhyperbeln, die an den Kammerfirsten entstehen, bei der Antennenstellung parallel zu diesen (PS) am stärksten ausgeprägt sind und bei senkrechter Stellung (PP), besonders bei (PZ) viel schwächer sind. Interessant sind aber die Reflexionshyperbeln einzelner Objekte. Die Objekte bei 147 m / 20 ns und 117 m / 40 ns bilden sich nur bei (PS) ab und sind in den übrigen Messungen nur undeutlich zu sehen, was auf ein linienförmiges Objekt hindeutet, daß quer zum Profil liegt. Bei 130 m / 210 ns ist ein Objekt nur in PS und P4 zu sehen. Das bei 135 m / 60 ns liegende Objekt scheint punktförmig zu sein, da es bei allen Orientierungen als Hyperbel erscheint, nur bei PS mit etwas schwächerer Intensität. Die Firstkanten und der Verbindungsgang sind bei PZ am schärfsten wiedergegeben, da bei der PZ Messung durch die Antennenanordnung bei quer zur Profilrichtung liegenden Strukturen die größere Auflösung pro Trace erzielt wird. Bei den Messungen PS, P4 und PP sieht man an der verformten Hyperbel an der Firstkante bei 120 m die Störeinflüsse beim Übergang über die Firstkante hinweg, da Sender und Empfänger 1 m Offset in Profilrichtung zueinander haben.

Bezüglich der unterschiedlichen Erfassung von Objekten bei PS und PZ Messungen wurden auf der 875 m Sohle weitere Messungen durchgeführt. Dort wurde bei einer Erkundungsbohrung Lauge erbohrt, die mit hohem Druck aus der Bohrung schoß. Es stellte sich heraus, daß zufällig eine alte Bohrung angebohrt wurde, die mit Lauge gefüllt war. Ziel war es nun, mit Hilfe von Zero Offset Sektionen diese linienförmigen Objekte zu erfassen. Dazu zeigt
Abbildung 5.9: Vergleich der Zero Offset Sektionen bei verschiedenen Antennorientierungen. Im Uhrzeigersinn von links oben: Senkrecht (PS), quer (PZ), mit 45 Grad und parallel zum aufgenommenen Profil.
Einfluß der Antennenorientierung bei Zero Offset Sektionen

Abb. 5.10: Lage der Messungen auf der 875 m Sohle

Abb. 5.10 die Situation und Lage der Messungen auf der 875 m Sohle.

Abb. 5.11 zeigt Ausschnitte der auf den Profilen A und C gemessenen Sektionen, die parallel zur Erkundungsbohrung liegen. Trotz gleicher Verstärkung wird die Bohrung bei den PS Messungen als Reflektor bei 130 ns deutlicher erfaßt, als bei den PZ Messungen. Dies entspricht bei Salzgeschwindigkeit einer Tiefe von 7.8 m, was mit der Geometrie, die bekannt ist, gut übereinstimmt. Die Bohrung wird besonders gut auf dem Profil A erfaßt. Die alte Bohrung läßt sich nicht als Reflektor ausmachen. Ergänzt wurden die Messungen durch die Querprofile G und F. Abb. 5.12 zeigt die PS Messung auf Profil A gemeinsam mit den Querprofilen F und G der PZ Messung. Somit stehen bei dieser Darstellung die Antennen immer senkrecht zur Erkundungsbohrung. Abb. 5.13 zeigt die entsprechende Darstellung der Profile, wobei die Antennen immer parallel zur Erkundungsbohrung orientiert sind. Die Erkundungsbohrung wird dabei auch von den Quermessungen F und G erfaßt. Auffällig ist, daß bei der PZ Messung die Streckenrückwand stark reflektiert, sodaß sich Reflexionen bei 30 und 65 ns ergeben. Der dadurch bedingte Energieverlust im Signal kann die Ursache dafür sein, daß die Erkundungsbohrung nur noch schwach erfaßt wird.

Es überrascht, daß die Lage der Erkundungsbohrung so gut sichtbar ist, die Lage der alten Bohrung sich nur erraten läßt. Man könnte annehmen, daß sich die Erkundungsbohrung deshalb gut abbildet, da ihr Bereich von der Salzlauge gut durchfeuchtet ist und damit einen guteitfähigen Kontrast darstellt. Allerdings sollte sich dann mindestens der Teil der alten Bohrung gut abbilden, der unterhalb der Erkundungsbohrung liegt und noch mit Lauge gefüllt sein muß. Mit einem Televiewer wurde festgestellt, daß sich das alte Bohrloch in einer Tiefe von 6.4 m befindet, was einem Profilmeter von 14.8 m entspricht.

Geoelektrische Sektionsmessungen sind für diesen Bereich von der GSF schon vorbereitet worden und es ist ein interessanter Bereich, um radartomographische Messungen vorzunehmen, um die räumliche Lage der alten Bohrung zu erkunden.
Einfluß der Antennenorientierung bei Zero Offset Sektionen

Abbildung 5.11: Ausschnitt PS und PZ Messungen auf der 875m Sohle zur Lokation eines luftgefüllten Bohrloches
Einfluß der Antennenorientierung bei Zero Offset Sektionen

Abbildung 5.13: dito senkrecht zum Bohrloch
5.4 Streckenquerschnittsmessungen

Deutlich ist in allen Abbildungen die Reflexion der Firste der 511 m Kammer ab 120 ms zu sehen. Dies nicht nur, wenn die Antennen auf der Sohle der Strecke aufliegen, sondern auch auf dem Südstoß und der Firste. Nur Richtung Norden wird die Reflexion schwächer. Die QZ Messungen sind alle in den Bereichen der Stöße gestört (auf Abb. 5.14 bei 4-5 m und 9-10 m zu sehen). Dies wird durch die dort verlegten Kabelstränge verursacht, zu denen die
Abbildung 5.15: Photo der Lokation N mit markiertem Querschnitt. Blick Richtung Westen, links ist der Südstoß zu sehen.

Antennen genau senkrecht stehen (siehe Abb. 5.15).

Die besten Messungen liefert die Lokation N, die sich in den vorhergehenden Messungen schon als störarm zeigte. In Abb. 5.17 kann man auch die Sohlenreflexion bei 220 ns beobachten, besonders deutlich bei Orientierung auf Sohle und Firste und zu den Stößen hin stark abgeschwächt. Zur Firste hin verschieben sich die Einsatzzeiten um 20 ns, was auf den zusätzlich von dem Signal zu durchlaufenden Weg hindeutet (2 x 3 m Streckenhöhe ergeben bei Luftgeschwindigkeit genau 20 ns Gangunterschied).

Aus Richtung Norden lassen sich 2 Reflexionen bei ca. 450 ns und 630 ns ausmachen, besonders bei der QZ Messung, was bei Salzgeschwindigkeit Reflektoren in einer Entfernung von 27 und 38 m entspricht. Da besonders die QZ Messung diese Reflektoren erfasst, handelt es sich wahrscheinlich um linienförmige Objekte, die quer zur Profilrichtung liegen. Dies bedeutet, es sind Objekte, die in der Sohlebene liegen. Von der Entfernung her kann es sich bei der 450 ns Reflexion um den nordwestlich gelegenen Kreuzgang und bei der 630 ns Reflexion um die nordöstlich liegende Strecke handeln, die auch parallel zum Südstoß liegt und zu Schacht 2 und Kammer 8 führt.
Abbildung 5.16: 200MHz Streckenquerschnittsmessungen auf 490 m Sohle am Punkt O, wobei die einzelnen Spuren richtungsabhängig aufgetragen wurden.
Abbildung 5.17: 200MHz Streckenquerschnittsmessungen auf 490 m Sohle am Punkt N
Abbildung 5.18: 400MHz Streckenquerschnittsmessungen auf 490 m Sohle am Punkt N
5.5 Einfluß der Antennenorientierung bei Variable Offset Sektionen (CMP Messungen)

In Abb. 5.19 sind die Semblance Analysen für senkrecht, diagonal (45 Grad) und parallel orientierte Antennen für 200 MHz gegenübergestellt. Abb. 5.20 zeigt die zugehörigen Sektionen für 200 und zusätzlich 50 MHz. Bei der Semblance Analyse fallen nur zwei unwesentliche Unterschiede auf: Die Geschwindigkeitsbestimmung der Reflexion an der Streckenrückwand (bei 40 ns) unterscheidet sich. Bei paralleler Orientierung wird die Kamersohle (bei 230 ns) mit einem breiteren Geschwindigkeitspektrum erfaßt.

Mehr Information liefern die CMP Messungen in der Amplitudendarstellung. Neben direkter Luft- und Bodenwelle ist die Reflexion der Kammerförste bei 130 ns auf allen Sektionen deutlich zu sehen. Bei der 50 MHz Messung fällt auf, daß die Amplituden der direkten Bodenwelle bei 45 Grad und parallelem Fall deutlich abnehmen. Bei 200 MHz ist dieser Trend nicht zu sehen. Bei 45 Grad ist eine Abnahme der Amplitude ab 10 m im hinteren Teil des Reflektors zu sehen. Interessant wird der parallele Fall. Bei 50 MHz bei 8 m verschwindet sich die Phase deutlich und die Amplitude nimmt leicht ab. Deutlicher wird es bei 200 MHz bei 6.5 m. Die Phase ist um 180 Grad verschoben und es findet eine starke Amplitudenabnahme statt. Abb. 5.21 zeigt den Bereich noch einmal in einem größeren Ausschnitt für die Frequenzen 100, 200 und 400 MHz. Bei 100 MHz wird besonders die Phasenverschiebung bei 6.25 m deutlich, bei 200 MHz bei 6.5 m und bei 400 MHz bei 4.8 m, wobei hier Phasenverschiebung und Amplitudenabnahme sich über einen größeren Bereich erstrecken, bzw. aufgelöst werden. Bei einer Reflektortiefe von 7.9 m ergibt das bei 200 Mhz einen Brewsterwinkel von 22.3 Grad und damit ein ε_2 von 0.98 für die zweite Schicht.

Wie sieht das an den anderen Lokationen der 490 m Sohle aus? In Abb. 5.22 werden die Lokationen E, I und Q betrachtet. Die stark gestörte Messung E liefert bei 6 m kein so eindeutiges Bild wie im Vergleich zu I, wo es bei 6 m neben der Phasenverschiebung zur völligen Auslöschung der Amplitude kommt. Eine zweite Auslöschung mit Phasenverschiebung läßt sich bei der 130 ns Reflexion bei 5 m ausmachen. Am Punkt Q, der sich in Kammer 8 befindet, kann nochmals zwischen 200 und 400 MHz verglichen werden. Die 100 ns Reflexion wird bei 200 MHz bei 5 m, bei 400 MHz bei 5.75 m ausgelöscht. Eine zweite Auslöschung ist bei der 113 ns Reflexion bei beiden Frequenzen bei 6.5 m zu sehen.

Auf der 800m Sohle bei den Messungen an dem homogenen Salzpfleiler hat man die Möglichkeit, eine ähnliche geologische Situation zu messen. Der Pfei-
Einfluss der Antennenorientierung bei Variable Offset Sektionen (CMP Messungen)

Abbildung 5.19: semblance Analyse

Abbildung 5.20: Vergleich Antennenorientierung senkrecht, parallel und 45 Grad für 50 und 200 MHz bei gleichem Prozessing der Daten
Einfluß der Antennenorientierung bei Variable Offset Sektionen (CMP Messungen)

Abbildung 5.21: Brewster Winkel Amplituden und Phasenveränderung für die Frequenzen 100, 200 und 400 MHz an der Lokation K

ler selbst dient als Salzschicht und die rückwärtige Strecke als luftgefüllte Kammer. Abb.5.23 zeigt bei paralleler Orientierung der Antennen bei 9 m deutlich Phasenverschiebung um 180 Grad und eine Abnahme in der Amplitude. Dies ist auch in den ersten 20 Metern der Durchstrahlungsmessung in 5.3 auf Seite 65 zu sehen, die einer CMP Messung mit ortsfestem Sender entspricht.

Die Tabelle 5.1 faßt nochmal alle Ergebnisse für einen Salz/Luft Kontakt zusammen.

Inwieweit läßt sich der Brewsterwinkel in anderen geologischen Fällen beobachten, wenn das zweite Medium im Gegensatz zur Luft geringleitfähig ist? Dazu wurden ähnliche Messungen an der Lokation J gemacht, wo in den Stößflug hineingemessen wurde. Ziel war es, den vermuteten Anhydrit bei 140 ns als Reflektor zu nutzen. Abb. 5.24 zeigt die Semblance Analyse und Abb. 5.25 die eigentlichen Sektionen. Bei den vorliegenden Daten handelt es sich um Wiederholungsmessungen, die in einem kleinen Meßabstand und mit hohem Stacking durchgeführt wurden. Bei dem 140 ns Reflektor lassen sich jedoch keine Merkmale finden, die auf den Brewsterwinkel deuten. Zu späteren Einsatzzeiten kreuzen sich auch Reflexionen, was durch Interferenzerscheinungen auch zu Aufhebung der Amplitude führen kann und die Beurteilung der Daten zusätzlich erschwert. Nimmt man einen Salz/Anhydrit Übergang an, ergibt sich ein theoritischer Brewsterwinkel von 51 Grad, was
Einfluß der Antennenorientierung bei Variable Offset Sektionen (CMP Messungen)

Abbildung 5.22: Gleiche Messungen für 200 MHz an den Lokationen E, I und Q; für Lokation Q auch mit 400 MHz.

<table>
<thead>
<tr>
<th>Lokation</th>
<th>Frequenz (MHz)</th>
<th>Reflektor (ns)</th>
<th>Abnahme (m)</th>
<th>Reflektortiefe (m)</th>
<th>Brewster (Degree)</th>
<th>ε_{52}</th>
</tr>
</thead>
<tbody>
<tr>
<td>490k1</td>
<td>50</td>
<td>130</td>
<td>8</td>
<td>7.8</td>
<td>27.1</td>
<td>1.53</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>115</td>
<td>6.25</td>
<td>6.9</td>
<td>24.4</td>
<td>1.19</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>132</td>
<td>6.5</td>
<td>7.9</td>
<td>22.3</td>
<td>0.98</td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>115</td>
<td>5.75</td>
<td>6.9</td>
<td>22.6</td>
<td>1.01</td>
</tr>
<tr>
<td>490e1</td>
<td>200</td>
<td>115</td>
<td>6</td>
<td>6.9</td>
<td>23.5</td>
<td>1.10</td>
</tr>
<tr>
<td>490i1</td>
<td>200</td>
<td>107</td>
<td>6</td>
<td>6.4</td>
<td>25.0</td>
<td>1.27</td>
</tr>
<tr>
<td></td>
<td></td>
<td>130</td>
<td>5</td>
<td>7.8</td>
<td>17.8</td>
<td>0.60</td>
</tr>
<tr>
<td>490q1</td>
<td>200</td>
<td>100</td>
<td>5</td>
<td>6.0</td>
<td>22.6</td>
<td>1.01</td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>100</td>
<td>5.75</td>
<td>6.0</td>
<td>25.6</td>
<td>1.33</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>113</td>
<td>6.5</td>
<td>6.8</td>
<td>25.6</td>
<td>1.33</td>
</tr>
<tr>
<td>490t1</td>
<td>400</td>
<td>40</td>
<td>2.25</td>
<td>2.4</td>
<td>25.1</td>
<td>1.27</td>
</tr>
<tr>
<td>800e1</td>
<td>200</td>
<td>210</td>
<td>9</td>
<td>12.6</td>
<td>19.7</td>
<td>0.74</td>
</tr>
<tr>
<td></td>
<td>234</td>
<td>9</td>
<td>14.0</td>
<td>17.8</td>
<td>0.60</td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 5.1: Die Ergebnisse der Brewsterwinkelbestimmung bei allen CMP Messungen, die über einem Salz/Luft Kontakt gemessen wurden.
zu einer Auslöschung der Amplitude bei einem Antennenabstand von 20.9 m führen muß. Dies läßt sich aber nicht beobachten. Sollte es sich bei dem Reflektor um eine dünne Toneinlagerung handeln, würde man alleine durch die hohe Leitfähigkeit des Tones keine Auslöschung sehen.

Einfluß der Antennenorientierung bei Variable Offset Sektionen (CMP Messungen)

Abbildung 5.24: Semblance Analyse der CMP Sektion

Abbildung 5.26: 574m Sohle, Anhydrit Block in geringer Tiefe
Kapitel 6

Praxisteil III: Feldbeispiel
Salzaufwölbung

Der mittlere Bereich der Sohle von Kammer 8 auf der 490 m Sohle ist stark aufgewölbt. Der seitliche Druck des aufliegenden Gebirges versucht, die Kammer zu verschließen. In der Schwebe zwischen der Firste der darunterliegenden Kammer und der Sohle von Kammer 8 haben sich zahlreiche Hohlräume gebildet, wo sich das Salz an Trennflächen in Paketen aufblättert. Ziel war es, an diesem Feldbeispiel die erarbeiteten Methoden zu erproben. Durch Profilmessungen mit den hochauflösenden 400 MHz Antennen sollten im ersten Schritt die durch die Aufwölbung entstandenen Hohlräume als Reflektoren geortet werden. Im zweiten Schritt sollte mit Hilfe des zu messenden Brewsterwinkels der Reflektor als Salz/Lufttrennfläche identifiziert werden.

In beiden Profilen ist in einem Tiefenbereich von 7 m deutlich die Firste der darunter liegenden Kammer zu sehen. Der etwas schwächere Reflektor in 5 m Tiefe (bei 75-90 ns) läßt sich identifizieren, wenn man die Werte halbiert und mit Luftgeschwindigkeit multipliziert. Man erhält 11.25-13.5 m, was der Entfernung von der Sohle zur Firste von Kammer 8 entspricht.

Die starken Reflektoren zwischen 15 ns und 50 ns werden durch die Salz/Luft Trennfläche der Hohlräume hervorgerufen. Doch erst die CMP Messungen, die bei Profilometer 15 durchgeführt wurden, sollen beweisen, daß es sich tatsächlich um Hohlräume handelt.

Abb.6.4 zeigt die Semblance Analyse und Abb. 6.5 die eigentlichen CMP Sektionen. Für den interessierenden Tiefenbereich bis 50 ns liefern die Semblance Analysen nur eine schwache Reflexion bei 45 ns mit einer Geschwindigkeit von 0.13 ns. Besonders deutlich ist bei 90 ns die Reflexion der Firste im Geschwindigkeitsbereich von Luft zu sehen.

Abb. 6.6 zeigt die CMP Sektionen nochmals in einem größeren Maßstab. Viele Reflexionen überlagern sich und es war auch bei der praktischen Durchführung
Abbildung 6.1: 3D Ansicht von Osten gesehen, mit \(v = 0.12 \text{m/ns} \) migriert

Abbildung 6.2: 3D Ansicht von Westen gesehen, mit \(v = 0.12 \text{m/ns} \) migriert
Abbildung 6.3: 400Mhz über Aufwölbung

Abb. 6.7 zeigt ein Modell solcher Hohlräume, die sich in der Schwebe über einer größeren Kammer gebildet haben und die daraus mit 400 MHz berechnete synthetische Zero Offset Sektion. Analog zu den gemessenen Daten kann bei den geringen Mächtigkeiten der hier betrachteten luftgefüllten Aufwölbungen die Reflexion der Luft/Salz Übergänge nicht mehr aufgelöst werden.

Zum Schluß gibt es noch ein Photo (Abb. 6.8), wie solche Aufwölbungen, die Größenordnungen im Dezimeter bis Meterbereich einnehmen können, tatsächlich aussehen. Das Bild zeigt die Seitenwand des Rolllochs im Kernlager in der Kammer 4.

¹Um Ton oder einen anderen Reflektor hätte es sich aus Sicht der Geologie an dieser Lokation auch nicht handeln können.
Abbildung 6.4: Semblance Analyse der CMP Sektion

Abbildung 6.5: Bei Profilometer 15 gemessene CMP Sektion mit senkrechter und paralleler Antennenorientierung
Abbildung 6.6: Ausschnitt aus den CMP Messungen am Profilmeter 15 des Querprofiles

Abbildung 6.7: Modell der luftgefüllten Aufwölbungen. Der große untere Bereich soll Kammer 8 auf der 511 m Sohle nachbilden
Abbildung 6.8: Bild einer solchen Aufwölbung, deren Dimension im Dezimeter Bereich liegt
Kapitel 7

Zusammenfassung und Ausblick

Der Brewsterwinkel konnte bei nichtleitfähigen Reflektoren am Beispiel von luftgefüllten Hohlräumen im Salinar nachgewiesen werden. Der beobachtete Brewsterwinkel liegt im Bereich zwischen 20–26 Grad und die daraus bestimmte relative Dielektrizität für Luft ergibt einen Wert zwischen 0.7–1.3. Theoretisch würde der Brewsterwinkel bei 22–23 Grad liegen und die relative Dielektrizität von Luft liegt bei 1. Somit stimmen die ermittelten Werte im Rahmen der Meßgenauigkeit mit den theoretischen Werten überein.

Im Feldbeispiel der Salzaufwölbungen in Kammer 8 ist die praktische Anwendbarkeit gezeigt. Die Zero Offset Sektion liefert die Geometrie des Untergrundes. Die Variable Offset Sektion bei senkrechter Antennenorientierung liefert die Geschwindigkeiten. Mit Hilfe der zusätzlich durchzuführenden Variable Offset Sektion mit paralleler Antennenorientierung läßt sich der Brewsterwinkel bestimmen, wobei die CMP Messung mit senkrechter Antennenorientierung als Referenz für Amplitude und Phase dient. Über das Auftreten des
Brewsterwinkels und der sich daraus ergebenden relativen Dielektrizitätszahl läßt sich der Reflektor als Salz/Luft Kontakt identifizieren.

Die Antennencharakteristik der 200 MHz Antennen konnte an einem homogenen Salzpfeiler auf der 800 m Sohle für senkrechte und parallele Orientierung der Antennen aufgenommen werden. Sie entspricht im Grundcharakter denen des in der Theorie berechneten infinitesimalen Dipols. Die für die Brewsterwinkelbestimmung interessierenden Amplitudeneinbrüche bei paralleler Antennenorientierung treten bei 26 Grad auf.

Es konnte ein Unterscheidungskriterium gefunden werden, um die Effekte von Brewsterwinkel und Antennencharakteristik zu trennen. Dies gelingt, wenn man die relative Phasenlage im interessierenden Winkelbereich berücksichtigt. Die Antennencharakteristik bewirkt eine Phasenverschiebung von ca. 45 Grad, wobei der Brewsterwinkel immer mit einer Phasenverschiebung von ca. 180 Grad gekoppelt ist. Das Phasenverhalten läßt sich gut am Beispiel der theoretisch berechneten Modelle im Theorieviertel nachvollziehen.

Es läßt sich zusammenfassen, daß Amplitudenabnahme und Phasenlage bei der Bestimmung des Brewsterwinkels berücksichtigt werden müssen.

Durchgeführt werden, ob der Brewsterwinkel auch bei anderen Materialien und geologischen Situationen zu beobachten ist.

Messungen mit abgeschirmten Antennen müssen zeigen, ob sich Reflektoren im Vollraum eindeutiger zuordnen lassen. Rückseitige Reflexionen sollten damit wirksam unterdrückt werden, aber der große Winkelbereich der Antenne bleibt, auch wenn diese abgeschirmt ist. Erst Richtantennen, die einen sehr kleinen Winkelbereich erfassen, werden eine gezielte Untersuchung ermöglichen.

Präzisere Messungen der Antennencharakteristik können Daten liefern, die es ermöglichen, die Amplitudenschwankungen aus den Sektionen herauszurechnen.

¹Die Messungen wurden auf dem Betriebsgelände der BGR in Berlin Spandau durchgeführt und sind in der vorliegenden Arbeit nicht weiter dargestellt.
Kapitel 8

Danksagung

An erster Stelle möchte ich mich für die Betreuung meiner Diplomarbeit bei Herrn Prof. Dr. U. Yaramanci bedanken, der mich auch zu diesem Thema angeregt hat. Ob in intensiven Diskussionen oder zwischen Tür und Angel gab er mir immer wieder wertvolle Hinweise, die zum Gelingen der Arbeit beigetragen haben. Bei Herrn Prof. Dr. H. Burkhard danke ich mich für die Übernahme des Koreferates und die langjährige Betreuung während des gesamten Studiums.

Herrn K. Kohler danke ich für das zur Verfügung gestellte FORTRAN Postscript Plotting Package PSPL0T1.

Bei Herrn J. Funk danke ich mich besonders für die technische Betreuung und die Einweisung in die RAMAC Apparatur. Ein Dank geht auch an Herrn M. Schmansow und Herrn U. Schenklhnh, die für mich die Halterungen für die RAMAC Apparatur anfertigten, die ein stufenloses Drehen der Antennen ermöglichten.

Bei Herrn G. Kurz danke ich mich für die ersten Radardaten aus der Asse.

Und bei Frau U. Cramer danke ich mich vor allem für den Beistand bei den ständigen bürokratischen Aufgaben.

1hevin@ocean.nova.edu oder www.nova.edu/ocean
Literaturverzeichnis

A.1 CMPANO2: Fortran90 Prg. zur Geschwindigkeitsanalyse von CMP-Daten

```
program cmpano2

character inpar*,12,inamp*,12,outana*,12,outlog*,12,header*32
integer(4) amp, tr, s, ntr, ms, mv, ntg, n, ti
real ampl(0:2047, 0:2047), sembl(0:2047, 0:2047)
real v, vpsw, xpsw, dv, vl, t0, tpsw, dt, dx, t, ev, ampsum, energysum, semblsum

print *
pause 'press key to start processing....'
!open (5, file='cmpano2.par')
read(5,*) inpar
read(5,*) inamp
read(5,*) vl ! starting stacking velocity
read(5,*) nv ! number of velocities to calculate
read(5,*) dv ! velocity interval
read(5,*) ntg ! timegate (number of sampleinterval)
read(5,*) outana
read(5,*) outlog

close(5)

print*, 'scriptfile cmpano2.par loaded'

open (5, file=inpar)
read(5,*) header ! number of samples
read(5,*) ns ! sampleinterval
read(5,*) ntg ! number of traces
read(5,*) dx ! traceinterval

close(5)

! doubling antenna distance interval because with my measurement
```
CMP ANO/2: Fortran90 Pr. zur Geschwindigkeitsanalyse von CMP-Daten

dx=dx+2.0 ! settings I get only half of the antenna distance

print*,inpar,' loaded'
print*
open(5, file=inamp)

do tr=0,ntr,1
 do s=0,ns,1
 read(5,*) amp
 ampl(tr,s)=real(amp)
 end do
 print *,tr,' traces in memory...
end do

close(5)

print*,inamp,' loaded'
print*
print*,traces:ntr
print*,samples:ns
print*,is this the correct antenna distance interval?
print*,Antenna--------midpoint------------Receiver
print*,dx:dx
print*,correct it in the par file from the data if it is wrong
print*,dt:dt
print*,start at velocity (in m/nsec):v1
print*,number of velocities:nv
print*,stepsizes of velocity(in m/nsec):dv
ev=v1+nv*dv
print*,end at velocity (in m/nsec):ev
tg=ntg*dt
print*,length of timegate:tg
print*,name output data:outana
print*
pause ' press key to start calculation'
print*

do n=0,nv,1
 v=v1+real(n)*dv
 vpow=v**2
 print*,v, m/ns calculating...
 do s=0,ns-ntg,1
 semblsum=0.0
 do s0=0,ntg,1 ! timegate loop
 print*,s0, s0 samples
 t0=real(s0)*dt
t0pow=t0**2.
ampsum=0.0
energysum=0.0
 do tr=0,ntr,1
 print*,tr, traces
 xpow=(real(tr)*dx)**2
 t=sqrt(t0pow*(xpow/vpow))
ti=mint(t/dt)
ampsum=ampsun+ampl(tr,ti)
energysum=energysum+ampl(tr,ti)**2
 end do
 semblsum=semblsum+(ampsun**2)/energysum
 end do
 semblsum=semblsum
end do

A.2 SLIDE2PS: Fortran90 Prg. zur Auftragung der Querschnitt Messungen

!--!
!
! Program Slide2PS MAIN V1.0: reads par-file with startingcoordinates
! and direction and plots the amp-file data
! along these coordinates into an PS-file.
! The program is used to show radar-traces
! along the slide of a corridor
!
! uses psplot subroutines for ps-printing
!
! max. 128 Traces/Coordinates
!
! sft = scalefactor in time
! sfamp = scalefactor in amplitudes
!
!--!
!
program slide2ps

end
implicit none

! to be changed as needed:

128=max. number of traces
1024=max. number of samples

character inamp*12, inpar*12, header*32
integer ns, nt, t, s, ampl(128,1024)
real dx, sx, sft, sfamp, sfco, dmatrix(2,2), vec(2), dvec(2)
real x, y, an

real tracet(128,1024), tracea(128,1024), dtracet(1024), dtracea(1024)

print *, '--'
print *, ' Program Slide2PS V 1.1'
print *, '--'
print *, ' reads par-file with starting coordinates'
print *, ' and direction and plots the amp-file data'
print *, ' along these coordinates into a PS-file.'
print *, ' The program is used to show radar-traces'
print *, ' along the slide of a corridor.'
print *

print *, 'par-file (xxxxxxxx.par):'
print *
read *, inpar

print *, 'amp-file (xxxxxxxx.amp):'
print *
read *, inamp

open(3, file=par)
read(3, *) header
read(3, *) ns
read(3, *) dt
read(3, *) nt
read(3, *) dx
read(3, *) sft
read(3, *) sfamp
read(3, *) sfco
read(3, *) ! dummy read for separator of par-data and coordinate data

do t=1, nt, 1
read (3, *) x, y, an
startx(t)=sfcx+xt
starty(t)=sfcy+y
g(t)=+3.14159/180
print *, startx(t), starty(t), ang(t)
end do

close(3)

open(4, file=amp)
do t=1, nt, 1
do s=1, ns, 1
read(4, *) ampl(t, s)
end do
end do

close(4)

print *, ' par- and amp-data have been read in'
print *
pause ' press key to start scaling:'

do t=1,nt,1
 do s=1,ns,1
 tracea(t,s)=sfamp*ampl(t,s)
 tracet(t,s)=sft*dt+s
 end do
end do

print * , ' scaling data completed and stored in memory'
print *

pause ' calculating PS image:'
call newdev('slideout.ps',11)
call psinit(.false.) ! false=landscape
call plot(0.5,0.5,-3) !nullpkt
call border(1000.*sft,0.5,1.1111,1111,10,1,1)
call keksym(0.5,0.2,0.1,17)timeScale=1000 ns,0..17,0)
call plot(4,3,-3) !nullpkt
call drwcrv(startx,starty,nt,0.03,.true.)
pause ' initialising PS image:'

! do t=1,nt,1
! call circle(startx(t),starty(t),0.05,.false.)
! end do
!
! showtraces

do t=1,nt,1
 dmatrix(1,1)=cos(ang(t))
 dmatrix(1,2)=-sin(ang(t))
 dmatrix(2,1)=sin(ang(t))
 dmatrix(2,2)=cos(ang(t))
 do s=1,ns,1
 vec(1)=tracet(t,s)
 vec(2)=tracea(t,s)
 dvec=matmul(dmatrix,vec)
 dtracet(s)=dvec(1)*startx(t)
 dtracea(s)=dvec(2)*starty(t)
 end do
 print * , ' calculating trace no.:',t
 call drwcrv(dtracet,dtracea,ns,0...false.)
end do

call plotnd
pause ' press any key'

print * , ' Program terminated. Status 0.K.'
print * , ' continue processing data with GS VIEW'

pause ' press key to quit...'
end
A.3 ASC2AMP: Fortran90 Prg. zur Extrahierung der Amplitudenwerte

! Program ASC2AMP V1.0: extracts 3colum radar data
!
!
! ns=number of samples
! dt=sampleinterval in nsec
! nt=number of traces (usually in x-direction)
! t=actual trace number
! s=actual sample number
! ampl=amplitude
!
!
! implicit none

character header(32),indat(12),outpar(12),outdat(12)
integer nt,ns,ios
real dt,dx,amplit,trace,time,traceold,t imeold

print *, '---' program asc2amp ---'
print *, 'Program ASC2AMP V 1.0.'
print *, 'extracts the 16 bit int amplitude data'
print *, 'from the 3colum ASCII radar data which'
print *, 'are exported from the REFLEX program'
print *, 'and saves the data into the file:'
print *, 'OUT:.AMP'
print *, 'Additionally the number of samples,'
print *, 'sample-interval in nsec,'
print *, 'number of traces and'
print *, 'space-interval in m are evaluated from'
print *, 'the data and saved into the file:'
print *, 'OUT:.PAR'
print *
print *, 'programmed by A. Helm 8.97 in F90'
print *
print *, '< ? > name inputdata: (expl: name.asc)'
print *
read *, indat
outdat='out.amp'
outpar='out.par'

print *
print '*', '<',indat, '> input datafile'
print *, '<',outdat, '> output datafile'
print *, '<',outpar, '> output parameterfile'
print *
pause 'press key to start read/writing'

header=outpar
ios=0
nt=0
ns=0
traceold=0.0
open(4,file=indat)
open(5,file=outdat)
do while (ios==0)
 read(4,*,IOSTAT=ios) trace,time,amplit
 if (trace>traceold) then
 dx=trace-traceold
 nt=nt+1
 traceold=trace
 print *,nt,' traces written...
 end if
 if (trace==0.0:and: time>timeold) then
 dt=time-timeold
 ns=ns+1
 timeold=time
 end if
 write (5,300) int(amplit)
end do
close(4)
close(5)
print *, '---'
print *
print *, '{',indat,'} has been read out,'
print *, '{',outdat,'} has been written to disk,'
300 format(16)
 print *
 print *, 'Parameterdata: '
 print *,ns
 print 100,dt
 print *,nt
 print 100,dx
 print *
 open (5,file=outpar)
 write(5,*) header
 write(5,*) ns
 write(5,100) dt
 write(5,*) nt
 write(5,100) dx
 close(5)
100 format(F8.3)
 print *, '---'
 print *
 print *, '{',outpar,'} has been written to disk,'
 print *
 print *, 'Program terminated. status 0.K.'
 print *, 'continue processing data with CAMPANO2.EXE'
 pause 'press key to quit...'
end
A.4 DIXILAND: Fortran90 Prg. zur Berechnung wahrer Geschwindigkeiten nach Dix

!! Program Dix Formula V1.02: calculates interval velocities !!
program dixform2
 implicit none
 character header(*32), indat(*12), outdat(*12)
 real vstap, twtime, tlauf, vinter,v,z
 integer anz,n
 dimension vstap(8), twtime(8), tlauf(8), vinter(8), z(8)

 print *, 'Program Dix Formula V1.04'
 print *, '-------------------------------'
 print *, 'calculates interval velocities'
 print *, 'programmed by A. Helm 6.97 & 2.98 in FORTRAN90'
 print *
 print *, 'Inputdatei? (xxxxxxxxx.par)'
 print *
 read *, indat
 open(3, file=indat)
 read(3, *) header
 read(3, *) anz
 read(3, 200) twtime(1), vstap(1)
 print 200, twtime(1), vstap(1)
 do n=2, anz, 1
 read(3, 200) twtime(n), vstap(n)
 print 200, twtime(n), vstap(n)
 end do
 close(3)
 200 format(2F10.4)

 print *, 'the data has been read into memory'

 vinter(1)=vstap(1)
 tlauf(1)=twtime(1)/2
 print *, 1, v, vinter(n)
 do n=2, anz, 1
 v=((vstap(n)**2)+twtime(n)-(vstap(n-1)**2)+(twtime(n-1)))/(twtime(n)-twtime(n-1))
 tlauf(n)=(twtime(n)-twtime(n-1))/2
 vinter(n)=sqrt(abs(v))
 print *, n, v, vinter(n)
 end do

 print *, '-------------------------------'
 z(0)=0.0
 pause
 do n=1, anz, 1
 z(n)=z(n-1)+taufla(n)*vinter(n)
 print 100, n, vinter(n), z(n), twtime(n)
 end do
 print *
 100 format(Z8, 'V', I2, ': ', F8.4, ' m/ns', F8.1, ' m', F8.0, ' ns')

 pause 'press key to continue'
 print *, 'Name der OUTPUT Datei? (xxxxxxxxx.dat)'
 read *, outdat
 open(4, file=outdat)
 write (4, *) outdat
 do n=1, anz, 1
 write (4, 300) vinter(n), z(n-1)
 end do
 write (4, 300) vinter(n), z(n)
 print 300, vinter(n), z(n)
 print 300, vinter(n), z(n)
end do
print*
print*,outdat,' has been written to disk.'
300 format(F8.4,F8.1)
end

A.5 RKKFKT: MATHLAB Funktion zur Berechnung theoretischer Reflexionskoeffizienten

function rkkfkt(f,e1,s1,e2,s2,dd)
% rkkfkt.m last version 28.2.98 13.00 checked 21.3.98 13.00
% matlab m-file zur Berechnung von komplexen Reflexionskoeffizienten
% unter Beruecksichtigung leitfaehiger Medien
% programmed by achim helm/master's thesis 1998
% eps0=8.8542e-12; \[\text{As/Vm}\]
c=299792458; \[\text{m/s}\]
freq=f*10^6; \% \[\text{Hz}\] # in MHz angeben!
omega=2*pi*freq;

% Medium 1:
eps1=e1;
mu1=1.; \% mu1 als 1 angenommen!
sig1=s1*10^-3; \% [S/m]

% Medium 2:
eps2=e2;
mu2=1.; \% mu2 als 1 angenommen!
sig2=s2*10^-3; \% [S/m]

% Vorberechnung von Termen, die mehrfach verwendet werden, um Rechenzeit zu sparen
k1=omega/c*sqrt(mu1*eps1/2*sqrt((sig1/(eps0*eps1+omega)^2)+i));
k2=omega/c*sqrt(mu2*eps2/2*sqrt((sig2/(eps0*eps2+omega)^2)+i));
al=omega/c*sqrt(mu1*eps1/2*sqrt((sig1/(eps0*eps1+omega)^2)-i));
a2=omega/c*sqrt(mu2*eps2/2*sqrt((sig2/(eps0*eps2+omega)^2)-i));
pk1=k1^2;
pk2=k2^2;
p11=a1^2;
p22=a2^2;

% Haupt-Schleife fuer Winkelberechnung von theta1
for theta=0:dd:90; \% dd size of interval of calculation
index=index+1;
thetabegin=theta*pi/180;

% Vorberechnung von Termen, die mehrfach verwendet werden, um Rechenzeit zu sparen
pstheta=sin(thetabegin)^2;
ctheta=cos(thetabegin);
qu=sqrt(0.5*((pk2-pa2)-(pk1-pa1)+pstheta)... +0.5*sqrt((pk2-pa2)^2+pstheta^2*(pk1-pa1)^2-...
2*0*pstheta*((pk1-pa1)*(pk2-pa2)+0.4*k1*a1+k2*a2)));
p=(k2*a2-k1*a1+pstheta)/q; \% q=0!

% Reflexionskoeffizient fuer
% senkrecht zur Einfallsbene einfallende E-Vektoren
rsr=((mu2*k1+cttheta-mu1*q)*i+(mu2*a1+cttheta-mu1*p))...
A CFKT: MATLAB Funktion zur Berechnung theoretischer Antennencharakteristiken

% Reflexionskoeffizient für parallel zur Einfallsebene einfallende E-Vektoren

\[r_{pr} = \frac{\mu_1 \mu_2 (k_2 - k_1) \theta - \mu_2 (k_2 q - k_1 p)}{\mu_2 \mu_1 (k_2 - k_1) \theta + \mu_2 (k_2 q + k_1 p)} \]

\[r_{rs}(\text{index}) = r_{sr} \]
\[r_{rp}(\text{index}) = r_{pr} \]
\[\text{winkel}(\text{index}) = \theta \]

A.6 ACFKTF: MATLAB Funktion zur Berechnung theoretischer Antennencharakteristiken

function acfkt(f, e1, s1, e2, s2, dd)
% ac.m 24.1.98 ah
% %
% % matlab m-file zur Berechnung von Dipolfeld
% %
% eps0 = 8.854e-12;
% eps1 = e1;
% eps2 = e2;
% sigma1 = s1*10^{-3};
% sigma2 = s2*10^{-3};
% omega = 2*pi*f*10^6; %f in MHz
% n = sqrt(eps2 - i*sigma2/(omega*eps0));
% kr = 1./sin(1./n);
% phie = 0.;
% phih = pi/2;
% dtheta=dd*2*pi/360; % calculation interval
% index=0;

for theta=-pi/2:dtheta:pi/2:
 index=index+1;
 wurzeln=sqrt(n^2 - sin(theta)^2);
 aire(index)=(cos(phie)/n)*((cos(theta)^2)/(cos(theta)+wurzeln)-(sin(theta)^2+cos(theta)*wurzeln))/((n^2+cos(theta)+wurzeln));
 airh(index)=1/n*(cos(theta)*sin(phih))/((cos(theta)+wurzeln);
 winkel(index)=theta;
end

index=0;
for theta=pi/2:dtheta:3/2*pi;
 index=index+1;
 wurzel2=sqrt(1.-n^2*sin(theta)^2);
 aire(index)=cos(phie)*((sin(theta)-2*cos(theta))*(wurzel2*n*cos(theta))/(n*wurzel2-n*cos(theta)))
 -cos(theta)^2/(wurzel2-n*cos(theta)));
 airh(index)=cos(theta)*sin(phih)/(wurzel2-n*cos(theta));
 winkel1(index)=theta;
end

pointer2screen=figure(1);
pointer1=findobj(pointer2screen,'Tag','amp'); axes(pointer1)
plot(winkel1*180/pi+90,20*log10(abs(airh1)),'y--',winkel1*180/pi+90,20*log10(abs(aire1)),'k--')
title(sprintf('eps1=%3.1f sig1=%3.1f [mS/m] neps2=%3.1f sig2=%3.1f [mS/m] nf=%3.0f [MHz] ...
eps1,s1,eps2,s2,f'), 'Fontsize',10);
ylabel('relative amplitude [dB]');

pointer2=findobj(pointer2screen,'Tag','phas');
axes(pointer2)
plot(winkel1*180/pi+90,angle(airh1)*180/pi,'y--',winkel1*180/pi+90,angle(aire1)*180/pi,'k--')
ylabel('phase [degree]');
xlabel('angle [degree]');

pointer3=findobj(pointer2screen,'Tag','pol');
axes(pointer3)
polar(winkel1*pi/2,abs(airh1),'y--')
hold on
ylabel('relative amplitude')
polar(winkel1*pi/2,abs(aire1),'k--')
hold on
polar(winkel1*pi/2,abs(airh),'y--')
hold on
polar(winkel1*pi/2,abs(aire),'k--')
hold off

clear
Anhang B

Übersicht der gemessenen Rohdaten
Abbildung B.1: Die Abbildung zeigt die Nomenklatur, die für die Bezeichnung der Radardaten verwendet wurde, um eine eindeutige Klassifizierung der Sektionen zu ermöglichen trotz der MS DOS Beschränkung auf 8 Zeichen.
Abbildung B.2: Messungen auf der 469 m Sohle
Abbildung B.3: Messungen auf der 490 m Sohle, Profilübersicht I
Abbildung B.4: Messungen auf der 490 m Sohle, Profilübersicht II
Abbildung B.5: Messungen auf der 490 m Sohle, CMP Übersicht I
Abbildung B.6: Messungen auf der 490 m Sohle, CMP Übersicht II
Abbildung B.7: Messungen auf der 574 m Sohle, Anhydritblock
Abbildung B.8: Messungen auf der 800 m Sohle, homogener Salzpfeiler
Abbildung B.9: Messungen auf der 875 m Sohle, Bohrloch
Abbildung B.10: Messungen auf dem BGR Gelände in Berlin, Spandau